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Abstract

Many countries face an unprecedented challenge in aging demographics. This has led to an 

exponential growth in research of aging, which, coupled to a massive financial influx of funding 

in the private and public sectors, has resulted in seminal insights into the underpinnings of this 

biological process. However, critical validation in humans have been hampered by the limited 

translatability of results obtained in model organisms, additionally confined by the need for 

extremely time-consuming clinical studies in the ostensible absence of robust biomarkers that 

would allow monitoring in shorter time frames. In the future, molecular parameters might hold 

great promise in this regard. In contrast, biomarkers centered on function, resilience and frailty 

are available at the present time, with proven predictive value for morbidity and mortality. In 

this review, the current knowledge of molecular and physiological aspects of human aging, 

potential anti-aging strategies, and the basis, evidence, and potential application of physiological 

biomarkers in human aging are discussed.
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1 Introduction and background

The process of biological aging has preoccupied humans throughout history, exemplified 

by religious lore, myths and stories about achieving long, healthy lives, even immortality, 

in almost every culture world-wide, with the Mesopotamian Epic of Gilgamesh as 

one of the earliest recorded examples, possibly dating back to 2100 BCE, in which 

the secret for everlasting live is desperately, and unsuccessfully, sought after (1). In 

comparison to prehistoric humans living as hunter-gatherers (2), human life expectancy 

has tremendously increased, in particular in the last 200 years, driven by various factors, 

including industrialization and the related abundance of food, processes that improved food 

preparation and preservation (e.g. those developed by Louis Pasteur), sanitation and hygiene 

in the public sector (e.g. drinking water treatment, sewage collection and purification) 

and clinical settings (e.g. hygiene promoted by Ignaz Semmelweis), as well as progress 

in the prevention (e.g. development of vaccines by Edward Jenner) and treatment (e.g. 

discovery of penicillin by Alexander Flemming) of infectious diseases or other pathologies 

(e.g. insulin by Frederick Banting, Charles Best and John Macleod, general anesthesia by 
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William Morton, or statins by Akira Endo). In addition, other factors, such as social changes 

including universal public health care, better education and awareness, or advances in the 

prevention and treatment of other diseases have also contributed to the almost unabated 

rise in average life expectancy, at least until recent years (3). Intriguingly, this increase 

has initially been driven by reduced mortality at a young age, which later extended to 

improvements in middle and old age, thereby elevating median life expectancy, while 

maximal life span remained largely unaffected (4–6). Indeed, arguments for and against 

a limit of human lifespan have been put forward (4, 7–13), and various morphological and 

functional data indicate that humans might already be a long-lived species (e.g. based on 

resting heart rate (14), body mass (15, 16), metabolic rate (17), time of development of 

sexual maturity (17, 18), brain mass (17), DNA methylation rate (19) or epigenetic signature 

(20)), arguing for a possible lifespan maximum and restricted window to push these limits in 

the absence of decisive new scientific, clinical, technological, social/societal or ecological/

environmental advances and breakthroughs (21, 22). In line, the current “world record” of 

an age of 122 years and 164 days set by Jeanne Calment has not been broken (or even 

approximated) since her death in 1997 (23). In fact, at the moment, the difference between 

her age and that of the second oldest person, Kane Tanaka (119 years and 107 days, death in 

2022) is with 3 years and 57 days larger than the difference between places 2 to 10 (Chiyo 

Miyako, 117 years and 81 days, death in 2018) of 2 years and 26 days.

Intriguingly, in the longest living countries, the rise in life expectancy has been slowing 

down since the 1990s (24). Moreover, even though higher intrinsic capacity related to 

cognitive, locomotor, psychosocial and sensory function have been measured in individuals 

of a certain age compared to their counterparts of earlier generations (25, 26), there is 

also evidence of an increasing gap between life- and healthspan (the number of years 

spent in good health), indicating that gains in life expectancy might not be matched with 

corresponding improvements in healthy aging (27). Indeed, it is indisputable that for many 

diseases, most of which are chronic in nature, age is by far the largest and most common 

risk factor (28). On a societal level, a strong demographic trend towards an aging population 

is observed in a number of countries (6), e.g. forecasted to triple the number of those 

85 years of age or older in the United States from 2022 to 2050 (29). This trend now 

extends beyond high-income countries: world-wide, the proportion of individuals aged 65 

or higher progressed from 5% in 1950 to 9% in 2020, and is expected to continue to rise 

to 16% by 2050 (30). This aging segment is now the fastest growing, by 2019, for the 

first time in human history, having outnumbered that of children younger than 5 years of 

age (31), reaching 2.1 billion individuals aged 60 and over by 2050 (32). Similarly, the 

population of 80+ years old will expand to 426 million in the next 25 years, approximately 

triple that of 2020 (32). Overall, the challenges emerging from this aging trend might 

surpass those of overall population growth, which has declined in recent decades and is 

projected to continue to slow (33). Therefore, the urge to understand the aging process, 

and, in the optimal case, prolong human life, or at least healthspan, is understandable in 

light of the functional decline, disease risk, and inevitable death faced at old age, and the 

societal challenges that arise from the changing demographics. To do so, first, aging per se, 

disentangled from age-associated diseases, has to be investigated (34) since at the moment, 

our understanding of the fundamental mechanisms driving aging is poor. For example, the 
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concept of chronological and “biological” age as potentially diverging entities describing 

separate aging trajectories is still nebulous and ill-defined (35–39). In fact, no consensus 

on the principles and processes of aging has been reached at the moment (40). Second, the 

definition of “healthspan”, or even “health” in general should be sharpened to provide the 

framework for measuring and improving this important parameter (41). Good arguments 

exist to extend “health” and “healthspan” beyond the mere absence of disease and infirmity, 

and, as suggested by the World Health Organization (WHO), include physical, mental and 

social well-being (42). Such insights and advanced could help to bring the “Decade of 

Healthy Aging”, declared for 2021-2030 by the United Nations (UN) General Assembly 

(43) based on an initiative of the WHO in 2020 (44), to a successful conclusion.

1.1 Aging: a biological/physiological program, stochastic deterioration, or a disease?

In contrast to post-natal development and puberty culminating in adulthood, generally 

recognized as genetically encoded and evolutionary selected biological programs, the 

underpinnings of aging, in particular after reproductive age, are highly debated (45). 

Evolution results in the retention of favorable genetic traits in a given environment, which 

are only stable if passed on to the progeny. Human aging beyond reproductive age (after 

the menopause in women) thus could be a.) evolutionary neutral, resulting in random 

deterioration and accumulation of damage, b.) under evolutionary pressure for an accelerated 

process, for example to remove non-reproducing individuals from the competition for 

scarce resources, or c.) inversely, favor a decelerated program, allowing post-reproductive 

individuals to care for the particularly dependent human infants, permitting adult humans 

to commit more time for resource provisioning by hunting and gathering (“Grandmother 

hypothesis”) (46, 47). Survival after menopause is rare in the animal kingdom, so far 

described in the wild in elephants (48), toothed whales (49) and chimpanzees (50), but 

might be more common mammals in captivity (51). Of note, a significant post-reproductive 

lifespan is also observed in pre-industrial humans, in absolute and/or relative length 

surpassing that of most animals, including non-human primates (48, 51, 52). Hence, 

unlike most species, humans substantially exceed reproductive age and exhibit remarkable 

longevity.

1.1.1 Insights into the aging process from long- or short-lived humans: 
Unraveling the underpinnings of human aging is not easy: for example, the study of 

(super)centenarians is marred by the tiny sample size (53). The prevalence of centenarians 

is estimated at about 1 per 2’200 (of which 85% are women and 15% men), and that 

of supercentenarians at about 1 per 1 million individuals (of which 90% are women and 

10% are men) (54). Genetic studies of long-lived individuals has led to the discovery of 

more than 50 genetic loci, albeit with small effect size (55). Most of these are linked 

to (cardio-metabolic) disease risk, e.g. apolipoprotein E (ApoE) (55), with the potential 

exception of the transcription factor forkhead box O3 (FoxO3), for which the underpinnings 

of the impact on human aging and longevity remains to be elucidated (56). Intriguingly, 

centenarians, despite exhibiting a longer lifespan, have lower disease rates throughout 

life and thus uncouple the association of old age from the normal occurrence of major 

age-related diseases seen in the normal population (57). Overall, “escapers” with no 

clinically demonstrable disease at the age of 100 (about 15%), “delayers” having no 
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age-related disease until the age of 80 years or later (about 43%), and “survivors” who 

experienced pathologies before the age of 80 years (about 42%) have been described (54). 

Next, so-called “Blue Zones” have been proposed as confined geographical regions with 

an apparent significant accumulation of healthy individuals at old age (58, 59). At the 

moment, no identifiable genetic signature has emerged from the study of these regions 

beyond potentially disease-relevant genes (analogous to those found in (super)centenarians), 

primarily investigated in the population of Sardinia (60, 61). Instead, the healthy longevity 

has mostly been attributed to lifestyle factors, including low smoking prevalence, ample 

physical activity, favorable nutrition, or strong social contracts (62, 63). While these factors 

are generally applicable and accepted (see section 3 below), others are more puzzling 

and contrary to broader associations, for example the fact that at least some of these 

“Blue Zones” are economically disadvantaged. Moreover, in some of these regions, e.g. 

Okinawa in Japan or Nicoya in Costa Rica, the proposed advantages seem only valid 

for certain populations, and are vanishing in the present time (64, 65). Whether these 

developments are caused by a changing environment, for example in dietary habits in 

Okinawa (66), or if these are based on incorrect classification is currently debated (63, 

67, 68). Importantly, the overall concept of such “Blue Zones” has been questioned due 

to poor record keeping (68, 69) and/or other causes of over-inflated records of (healthy) 

longevity, including claims related to pension fraud (70, 71). It thus is unclear whether 

“Blue Zones” will decisively help in our understanding of aging (72). Finally, so-called 

“premature aging” diseases, e.g. progeria, are caused by monogenic mutations in genes of 

DNA repair, genomic maintenance, fidelity of DNA replication and/or nuclear architecture, 

thus poorly representing the complexity and multifactorial aspects of bona fide physiological 

aging (73). In fact, the overall contribution of gene variants to aging is unclear: estimates 

for life span heritability range from 15-30% (74), while results from twin studies imply an 

even more moderate contribution (75), possibly below 10% (76). Similar to the findings in 

centenarians, exceptional parental longevity has been associated with reduced cardiovascular 

disease risk in the offspring (77). Interestingly, in such rare cases of favorable genetic 

endowment, benefits on health and survival are observed even with suboptimal lifestyle, 

socioeconomic status or nutrition (77, 78). Heterogeneity in familial longevity however 

implies additional factors to modulate the contribution of genetic factors in heritability 

(79). Overall, a genetic contribution to aging, in particular to exceptional lifespans, seems 

highly probable, but this most likely is based on multigenetic effects with individually very 

small effect sizes. Nevertheless, a healthy lifestyle and other factors, discussed below), can 

override an unfavorable genetic endowment to a significant extent.

1.1.2 The use of model organisms to understand the aging process: 
Investigating the aging process in humans is challenging due to reasons outlined in the 

previous paragraph and the fact that longitudinal aging studies would require decades. 

Consequently, human data are often based on cross-sectional associations, and molecular 

mechanisms of aging have primarily been studied in model organisms, with much fewer 

data in humans. While lower organisms are extremely valuable for mechanistic and causality 

investigations, translatability of aging insights to humans might be hampered for several 

reasons. First, as outlined above, human aging is characterized by a long post-reproductive 

period and humans are potentially already reaching upper limits of longevity. Second, the 

Furrer and Handschin Page 5

Physiol Rev. Author manuscript; available in PMC 2025 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



most commonly used model organisms in the aging field show pivotal biological differences 

compared to humans (80–84). For example, in Saccharomyces cerevisiae (baker’s yeast), 

replicative aging and chronological lifespan describe different processes for which direct 

human equivalents are missing. The same is true for spore formation under starvation 

conditions in yeast. Similarly, Caenorhabditis elegans (roundworm) can either be males 

or hermaphrodites, will enter a Dauer stage in starvation, are prototypical post-mitotic 

organism in regards to the somatic cells in the adult stage (85), and initiate a self-destructive 

reproductive program in which somatic biomass is used at the expense of yolk production, 

leading to reproductive death (86). Drosophila melanogaster (fruitfly) exhibit a marked 

fecundity – longevity trade-off, and can enter a reproductive diapause, for example when 

exposed to low temperatures. Starvation leads to a torpor state in Mus musculus (mouse), 

characterized by significantly reduced metabolic rates. In contrast, under non-starvation 

conditions, the metabolic rate, which is closely related to body size, is substantially higher 

in mice than in humans (approximately 7 times higher when comparing a 30-g mouse 

to a 70-kg human) (87). Similarly, heart rate is considerable higher in mice with ~600 

beats/min, which is nearly ten times that of humans (87).. Furthermore, mice exhibit a 

~30-50 times faster genomic response in different inflammatory conditions (88). Moreover, 

mice and Rattus norvegicus (rat) have up to 10 times longer telomeres compared to 

humans (89). In addition, kinetics of other processes such as RNA and protein turnover 

are higher than the human counterparts, with protein turnover being ~10 times faster (88). 

Finally, all of these model organisms have a profoundly shorter lifespan than humans, 

from about 14 days (chronological) in yeast, ~3 weeks in C. elegans, ~2-3 months in D. 
melanogaster, ~2-3 years in M. musculus to ~3-4 years in R. norvegicus. As such, one 

human year is approximately the equivalent of 13.7 rat days (88). The most commonly 

used non-human primate model, Macaca mulatta (rhesus monkey) reaches about 27 to 

maximally 40 years, thus only up to half of Homo sapiens (human) average lifespan. 

Mechanisms, interventions and pharmacological treatments that emerge from the study of 

these canonical model organisms might therefore not be directly extrapolatable to humans, 

or not feasible due to concerns of tolerability, safety and adverse effects, the development 

of tolerance, evasion, feedback mechanisms, compensation or decompensation in the much 

longer timescale of application in humans. Better results might emerge from the study 

of other long-lived species, many of which however are not amenable for large-scale, 

controlled and standardized investigations (90–93).

Besides these physiological differences, laboratory conditions might also introduce artefacts 

and differences when compared to the environment and lifestyle of humans “in the 

wild”. Most canonical model organisms are bred, kept and experimented on under strictly 

standardized conditions (94). For example, rodents are often housed in pathogen-reduced 

(or –”free”) conditions, humidity and temperature are rigorously controlled, often not at 

thermoneutrality (95) below which a substantial fraction of energy intake is used to maintain 

body temperature (96). The circadian light-dark cycle is fixed, without seasonal variation. 

The animals are severely sedentary, receive ad libitum diets, and undergo health monitoring, 

which leads to sick animals being removed from experiments cohorts for ethical reasons, 

e.g. due to infections or cancer (80–82, 84, 90, 97). Such environmental differences might 

be of uttermost importance, e.g. when trying to translate findings such as the lifespan 
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extension in mice with interleukin 11 (IL-11) inhibition (98), which might become an 

issue in humans that need a fully functional immune system, in addition to the other 

roles of this cytokine in various tissues (99, 100). Such functions might extend to other 

contexts, for example the effects elicited by exercise on immune cells and function that 

contribute significantly to training adaptation, reduction in musculoskeletal diseases and 

healthy aging (101). Environmental differences might also mask constraints of genetic 

effects. For example, mutations of the Methuselah gene (or antagonism of the corresponding 

protein) in D. melanogaster increases lifespan, but only in very specific conditions such as 

sex, food source, mating status and temperature (102). Thus, the apparent longevity is not 

paralleled by an increase in healthy aging, and achieved at the expense of general fitness, 

e.g. increased susceptibility to cold, a reduction in reproductive output, and dysfunction of 

the neuromuscular junction (102).

Despite these caveats, model organisms have yielded insights into mechanistic aspects of 

aging, and, as opposed to human studies, allow the acquisition of data beyond correlative 

or associative value. Moreover, in many regards, parallels between the physiology of model 

organisms and humans exist. Thus, investigations in model organisms are important, and 

should complement human studies. Moreover, evolutionarily conserved mechanisms allude 

to fundamental, important molecular principles. Nevertheless, a careful validation in humans 

is indispensable to avoid unwarranted extrapolation. For example, generally speaking, 

the reduction of processes involved in growth, anabolism, and sexual reproduction and 

fecundity, and the increase in maintenance and repair pathways emerged as main targets to 

increase longevity in various model organisms (103). For example, mice with mutations in 

the pituitary – growth hormone axis such as Ames or Snell Dwarf mice exhibit an up to 40% 

increased mean and maximal lifespan, together with a delayed age-related decline in T cell 

function, improved collagen cross-linking and reduced joint cartilage degeneration as well 

as osteoarthrosis, better cognitive function, and lower incidence and severity of neoplasms 

(104). However, these benefits only manifest when housed together with wildtype females 

since mutated males are killed by wildtype males. Moreover, co-housing is important since 

these animals have problems maintaining body temperature, spending a long-time in energy-

saving torpor. Overall, clear trade-offs between lifespan extension and physical vigor are 

observed (105, 106). Thus, in the wild, such mutants would be unlikely to survive and show 

a longevity phenotype. In this case, these findings fail to directly translate to human biology. 

Analogous mutations to those in Ames or Snell Dwarf mice can also occur in humans, for 

example in Laron syndrome. These individuals have a reduced risk for cancer and type 2 

diabetes. On the other hand, they often suffer from decreased stature, prominent forehead, 

depressed nasal bridge, underdevelopment of mandible, truncal obesity and micropenis in 

males (107). Moreover, the risk of cardiac disease mortality is increased, and more frequent 

deaths are reported from convulsive disorders and other non-aging-related causes (107). 

Most strikingly, despite a major reduction in “pro-aging signaling” (107), at least as defined 

in model organisms, mutations of the pituitary-growth hormone signaling axis in humans are 

not correlated with longevity (18, 108, 109). Collectively, while studies on aging processes 

in model organisms provide valuable insights into the molecular mechanisms, it is crucial to 

recognize that these organisms are not simply smaller versions of humans and validation of 

the findings in human cohorts remains essential.

Furrer and Handschin Page 7

Physiol Rev. Author manuscript; available in PMC 2025 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



2 Proposed anti-aging drugs and interventions

Studies in model organisms, in some cases complemented with human data, have revealed 

signaling pathways, cellular processes and key regulators to be involved in controlling 

longevity, so-called “hallmarks of aging”. Hallmarks of aging are defined as processes that 

1) exhibit a time-dependent manifestation during aging, 2) accelerate the aging process 

when intensified, and 3) slow down, stop or even reverse aging when modulated in 

the opposite direction (110). Twelve hallmarks of aging have been proposed: genomics 

instability, telomere attrition, epigenetic alterations, loss of proteostasis, compromised 

autophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, 

stem cell exhaustion, altered intercellular communication, chronic inflammation and 

dysbiosis (110). Even though “hallmarks” and “pillars of aging” have been proposed, 

these are largely based on associative observations, and fail to differentiate between causal 

events, epiphenomena, compensation or decompensation (111). Nevertheless, interventions 

and pharmacological agents have been designed and postulated to exert “anti-aging” effects 

(112) often aiming at re-establishing dysregulated cellular properties, as defined in the aging 

hallmarks (Figure 1) (38, 110, 113–128).

Examples include compounds mitigating the accumulation of reactive oxygen species 

(ROS)-caused damage (e.g. resveratrol, curcumin, astaxanthin, epigallocatechin-gallate, 

protandim, melatonin, spermidine or methylene blue), increased inflammation (e.g. 

berberine, 17-α-estradiol, acetylsalicylic acid or nordihydroguaiaretic acid), compromised 

autophagy (e.g. berberine, spermidine, rapamycin or caloric restriction), impaired stem 

cell function (e.g. spermidine, young blood/plasma or stem cell therapy), a decline 

in NAD+ levels (e.g. NAD+ precursors and boosters such as nicotinamide riboside or 

nicotinamide mononucleotide), excess hepatic methionine (e.g. glycine or methionine 

restriction), disturbed glucose homeostasis (e.g. metformin, acarbose, 17-α-estradiol or 

canagliflozin), cell senescence (senolytics such as fisetin, dasatinib and quercetin, berberine 

or curcumin), overactivation of mammalian target of rapamycin (mTOR) signaling, 

anabolism and dysregulated proteostasis (e.g. rapamycin, spermidine, growth hormone 

or caloric restriction), an overactive renin-angiotensin-aldosterone (RAA) signaling (e.g. 

enalapril) or epigenetic drift (e.g. cellular reprogramming or rejuvenation) (38, 110, 113–

128). However, at the moment, none of these have been successfully been tested in human 

aging, and the effects of most of these interventions and drugs fail to be broadly replicated 

even in model organisms, showing considerable species, strain and sex differences (129). 

Rapamycin is one of the very few exceptions, with an effect on aging observed in different 

species and mouse strains (130–132), with positive outcomes in the Interventions Testing 

Program (ITP) of the National Institute on Aging (NIA) (133, 134). Besides the conceptual 

conundrum of a single compound to be able to alleviate multifactorial aging, other caveats 

exist that caution the use of many of these drugs in humans. (135)In the following sections, 

several examples will be presented that illustrate the potential and pitfalls of “anti-aging” 

medication. A comprehensive discussion of all proposed interventions is beyond the scope 

of this review, indeed might be futile considering the missing clinical data on human health 

and longevity at the present time. For future development, challenges for translatability of 

pharmacological interventions have been described (135). In addition to these, a couple of 
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additional steps should be considered. First, reproducibility in pre-clinical models, as for 

example assessed in the ITP, might help to prioritize compounds. Second, validation in 

short-term randomized clinical trials should be benchmarked against biomarkers of aging 

with reliable data such as the physiological parameters discussed below. If positive, both 

in terms of efficacy of biomarker modulation as well as safety and tolerability, long-term 

randomized clinical trials should be done, which, even if costly, would provide data on hard 

clinical endpoints including mortality and disease risks. Moreover, such long trials would 

also reveal the safety, tolerability and adverse effects profile in chronic treatment. At the 

moment, none of the proposed pharmacological or interventional agents fulfill these criteria.

2.1 Pharmacological agents: repurposed and new drugs

2.1.1 Resveratrol: Resveratrol is a polyphenol hailed as activator of sirtuin 1 (SIRT1) 

and as a strong promoter of health and longevity (136, 137). However, initial findings 

could not be reproduced in mice (138), fruit flies (139), roundworms (139) or yeast (140). 

In fact, binding of resveratrol to SIRT1 (or the yeast orthologue Sir2) might have been 

an experimental artefact (140–142). Moreover, the nature of sirtuins, including SIRT1, 

as “longevity genes” has been questioned (143). It thus was of little surprise that a multi-

million endeavor of developing drugs based on the resveratrol/SIRT1 hypothesis failed (38, 

143, 144). Nevertheless, resveratrol has been tested in various clinical trials for different 

indications, however to date with little success, controversial results and poor evidence for 

efficacy (145–147).

2.1.2 Metformin: Metformin is one of the most widely prescribed medication for type 

2 diabetes. This drug is in general safe and well-tolerated, can however be associated with 

severe side effects including lactic acidosis, vitamin B12 deficiency, nephrotoxicity and 

lower testosterone levels (148, 149). Promising initial results of lifespan extension in model 

organisms could not be universally reproduced (150). Similarly, early results of improved 

survival of type 2 diabetes patients on metformin were not substantiated (151, 152). Thus, 

while the usefulness of metformin in type 2 diabetes is uncontested, a potential application 

in healthy individuals is strongly debated (153). Intriguingly, in a 40-months study in 

12 male cynomolgus monkeys, signs of improved brain function and morphology, and 

attenuated transcriptional fluctuations in several tissues were reported, along with mitigation 

of some of the proposed aging hallmarks (154). Whether these effects contribute to broad 

and bona fide aging benefits on health and longevity remains to be determined, as will 

translatability to humans (155).

2.1.3 Rapamycin: Rapamycin, a pharmacological inhibitor of mTOR activity, has 

originally been used as an immunosuppressant drug, e.g. in organ transplantation, but is in 

the meantime applied more broadly, for example in coronary stents to prevent restenosis, 

lymphangioleiomyomatosis, vascular malformations, facial angiofibroma or in different 

types of cancer (156). Based on the robust and highly reproducible effect of rapamycin 

on health- and lifespan in different model organisms, the use of rapamycin or rapalogs, 

compounds derived from the parent drug, in anti-aging treatment of humans has been 

proposed (157). Surprisingly, in terms of gene expression, rapamycin treatment however 

results in pro- and anti-aging profiles, at least in skeletal muscle (158). Moreover, different 
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muscles seem to exhibit divergent responses to rapamycin treatment (158, 159). It is now 

also clear that, contrary to initial hypotheses (160), rapamycin is not a “caloric restriction 

mimetic”, since rapamycin treatment and caloric restriction engage overlapping and distinct 

signaling pathways, and thus lead to at least partially divergent outcomes on the aging 

process (159, 161). To date, no clinical trials evaluating the effect of rapamycin on longevity 

or healthspan have been performed. However, a number of clinical trials using rapamycin 

or rapalogs in healthy individuals and patients suffering from age-associated diseases have 

led to mixed outcomes, and thus necessitate additional studies (162). Of note, most of these 

clinical trials were relatively short, some with a single dose of rapamycin or a rapalog. 

Extrapolation of tolerability, safety and potential adverse effects to a potential longer-lasting 

“anti-aging” treatment thus is difficult. Importantly, adverse effects occurred in these trials, 

even though to a lesser extent than those reported in long-term treated kidney transplant 

patients (162).

Geroprotective use of rapamycin and rapalogs will thus have to be done under consideration 

of expected on-target and potential adverse effects. First, the inhibition of mTOR by 

rapamycin in B and T cell activation is leveraged for the immunosuppressive effect in organ 

transplant recipients, linked to an increased susceptibility for life-threatening infections 

and sepsis in these and cancer patients (163). Immunosuppression obviously would not 

be desired in geroprotection, and might have not been seen in pathogen-shielded animal 

studies. However, signs of modulated adaptive immunity leading to immunostimulation in 

some trials indicate that the problem of immunosuppression might be preventable under 

certain conditions. For example, the rapaglog RAD001 improved adaptive immune function, 

while the selective mTOR complex 1 (mTORC1) inhibitor RTB101 increased the risk for 

respiratory illness in an unsuccessful clinical trial (164). A second on-target effect is related 

to the anti-proliferative effect on endothelial and smooth muscle cells, thereby exerting 

anti-angiogenic outcomes, one of the main principles of rapamycin treatment of renal 

carcinoma (165). In fact, the deterioration of vascular function observed during aging can 

be ameliorated by elevating vascular endothelial growth factor (VEGF) signaling, resulting 

in enhanced health- and lifespan in mice (166). Hence, this effect could be negatively 

affected by the suppressive influence of mTORC1 inhibitors on VEGF. Other consequences 

of the anti-angiogenic action of rapamycin include abnormal growth of the chondro-osseus 

junction, at least seen in rats (167), as well as diminished wound healing (168), as well 

as dysregulated menses and uterine growth in women (169, 170). A more general impact 

on fertility is implied by gonadal dysfunction, as well as impaired spermatogenesis in men 

(171). Then, a broad metabolic dysregulation has been reported as unwanted response, 

including the development of hyperglycemia, hypercholesterolemia, hypertriglyceridemia, 

dyslipidemia and diabetes (162, 172–174). Finally, in preclinical mouse models, microglial 

mTOR has been found to enhance β-amyloid plaques clearance in an Alzheimer’s model, 

with inverse effects of rapamycin, indicating that pharmacological inhibition of mTOR could 

promote the risk for this neurodegenerative disease (175). All of these concerns will have to 

be addressed before long-term geroprotective treatment with rapamycin or rapalogs will be 

attempted.
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2.1.4 Senolytics: Senolytics target senescent cells (“Zombie cells”) that are permanently 

proliferation arrested and characterized by the senescence-associated secretory phenotype 

(SASP), with potential detrimental effects on neighboring non-senescent cells (176). 

Through poorly understood mechanisms, senolytics selectively remove senescent cells that 

accumulate in different tissues during aging, leading to functional retrieval reminiscent 

of younger tissue. This strategy is highly promising, with outstanding results in pre-

clinical model organisms. However, again, human translation is still missing. Moreover, 

cell senescence is not merely a byproduct of aging, but a physiological process that is 

crucial in different contexts, for example embryogenesis, wound healing or tissue/organ 

regeneration (176–179). Based on this knowledge and pre-clinical studies, a pro-senescence 

therapy might actually be appropriate in several diseases, including pulmonary hypertension, 

atherosclerosis, liver and renal fibrosis, glucose intolerance, rheumatoid arthritis as well 

as cancer prevention and treatment (177). Thus, the choice of pro- or anti-senescence 

therapy could strongly depend on co-morbidities and differential diagnosis, in particular 

when senolytics are envisioned as geroprotective treatment in the elderly (177).

2.2 Anti-aging interventions: back to the roots?

2.2.1 Cellular reprogramming and (epigenetic) rejuvenation: During embryonic 

development, terminally differentiated tissue cells emerge from pluripotent stem cells, and 

originally from the omnipotent fertilized egg cell (180, 181). Since all of these cells 

share the same genome, the expression of the genes that define tissue identity has to be 

tightly regulated, most dominantly by epigenetic modifications that affect chromosomes, 

histones and the DNA. Conrad Waddington’s landscape provides a theoretical framework 

in which stochastic alterations of epigenetic modifications and gene expression are 

increasingly restricted and channeled during the developmental decision making process. 

This unidirectional waterfall model has been challenged and expanded. For example, 

dynamic changes in epigenetic modifications are observed in cell fate transitions, de-

differentiation and trans-differentiation, e.g. in tissue regeneration (181, 182). Moreover, 

somatic cell nuclear transfer or the production of induced pluripotent stem cells with 

transcription factors provide further proof that “epigenetic barriers” can be overcome and 

cells reprogrammed (183). Since, arguably, reprogramming of tissue to pluripotent stem 

cells could be interpreted as a “rejuvenation” back to a developmentally younger version, 

this technique has also gained traction as a possible anti-aging intervention (184, 185). 

In this case, potential age-associated epigenetic events, which could either be stochastic 

or deterministic, would be reversed. Evidence for such a drift emerges from various 

observations in aging tissues and organs, including loss of heterochromatin, alterations in 

histone post-translational modifications and DNA methylation, accumulation of histone and 

chromatin modifier variants, modifications of the levels and/or activity of non-coding RNAs 

and transposable elements, or faster and less controlled transcription (186–188). Thus, if 

such events were reversed, a more youthful and healthy cell function could potentially be 

achieved. Full reprogramming of an old organisms, for example using the four “Yamanaka 

factors” Oct3/4, Sox2, Klf4 and c-Myc (OSKM) obviously would be deleterious if all cells 

were de-differentiated into embryonic-like stem cells, leading to loss of organ function, 

severe health problems, cancer and death within days (184). For therapeutic purposes, partial 

reprogramming would be the goal to increase “stemness” without pluripotency acquisition.
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Despite various successful reports in rodent animal models, human translation of 

reprogramming is still elusive. First, the mechanistic underpinnings of reprogramming 

are only poorly understood, and therefore, the targeting of an exact endpoint in “partial” 

reprogramming currently is impossible. Accordingly, a large heterogeneity in outcomes 

is found in vitro and in vivo. In partially reprogrammed cells in culture, heterogeneity 

emerges from transient phenotypes/rejuvenation, epigenetic remnants and memory, loss 

of morphology, cell fate anomalies, or non-natural progenitor phenotypes, of which the 

extent varies by method, tissue source, progenitor cell age, cell environment and other 

experimental factors. A similar heterogeneity is observed in mice in vivo: abnormal tissue 

growth, teratoma, tumors and metastases, activation of transposable elements, hepatic and 

intestinal failure and other pathological events have been reported, frequently leading to 

premature death (184, 189–191). Again, as outlined in the discussion of drug treatment, 

partial reprogramming in humans has to consider the much longer lifespan, which could 

exacerbate many of the reported adverse effects in rodents. Of note, the Yamanaka factors 

c-Myc and Klf4 can act as oncogenes, while the other two, Oct3/4 and Sox2, often are 

highly expressed in tumors (190). Inversely, several tumor suppressor genes, including p53 

and Ink4a/Arf act as barriers to reprogramming. Moreover, reprogramming is not only 

stimulated by the presence of cell senescence, but also triggers this process, leading to 

higher number of senescent cells and the presence of SASP in the microenvironment (184, 

190). At the moment, based on our lack of deeper understanding, despite reported success 

in mice, partial reprograming might be best described metaphorically with a blindfolded 

shotgun blast leading to a massive effect, but very far from clinical translation.

2.2.2 Hormones, stem cells and young blood: Other attempts at rejuvenation 

are aimed at restoring youthful function with the use of circulating hormones and other 

signaling factors, or with stem cells. Sex hormones such as testosterone, estrogen or 

progesterone, growth hormone, dehydroepiandrosterone (DHEA) or thyroid hormone have 

been postulated to bring back youthful features when prescribed in elderly individuals (192, 

193). However, outside of clinically relevant and accepted applications, there currently is 

no proof for a general anti-aging effect, and serious reservations about long-term effects, 

adverse outcomes and risks exist.

Similarly, the injection of stem cells currently lacks evidence for anti-aging properties as 

opposed to the well-documented use in regenerative medicine in degenerative disorders 

(194). Several factors might be responsible for that: for example, exogenous stem cells 

might not be able to fulfill their purpose if the corresponding stem cell niche is aged. 

Moreover, several hurdles will have to be overcome (194). Since stem cells also undergo 

aging-related changes that compromise function (195), autologous donor cells might first 

have to be “rejuventated”, or heterologous donor cells from young compatible donors 

be used. The optimal type of (mesenchymal?) stem cell will have to be identified. 

Heterogeneity amongst cells and between donors, acceptors and isolation protocols will 

have to be accommodated. Adequate in vitro expansion and mass production methods will 

have to be established to meet the very high demand for systemic treatment. Standardization 

of approaches, as well as methods to track the fate and function of transplanted stem cells 
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will have to be performed. Finally, potential long-term effects, e.g. tumorigenesis, will have 

to be considered.

Parabiosis experiments in rodents have shown the potential of young blood to rejuvenate 

organ function in connected old animals, implying the existence of circulating factors 

that mediate the corresponding effects (196). At the moment, the identity of such factors 

is not known. Moreover, based on single heterochronic blood exchange experiments, it 

might be possible that the extent of detrimental effects of old blood surpasses that of the 

benefits of young blood, suggesting that at least in part, the rejuvenation in old animals in 

parabiosis might emerge from dilution of such pathological factors (197). Geroprotective 

benefits of therapeutic transfusion of young plasma in humans have not been documented 

so far. Moreover, known risks of infusion of human plasma include presence of infectious 

agents, serious allergic reactions, transfusion-related acute lung injury or overload of the 

circulatory system. In light of these risks, and the complete absence of proven clinical 

benefits on aging or most aging-related pathologies, the FDA currently advices caution for 

the commercialization of infusion of plasma obtained from young donors (198). Moreover, 

ethical issues about donor recruitment and compensation, and about disparities in access 

exist (199). Some of these might be solved once effective factors have been identified and 

can be recombinantly produced.

2.2.3 Caloric restriction: A seminal study of McCay, Crowell and Maynard, published 

in 1935, investigated whether undernutrition in rats retards growth (200). Intriguingly, 

they found that the calorically restricted and growth retarded animals exhibit an increased 

lifespan. Even though this effect was only seen in males, and not the already longer-lived 

females, this paper stimulated an exponential interest in caloric restriction as longevity 

intervention (201). Indeed, the initial observation was replicated and expanded in various 

canonical and non-canonical model organisms, including yeast, C. elegans, D. melanogaster, 
mice, dogs, and even water fleas, silkworms, spiders or fish (202). Due to the robustness of 

the effect, caloric restriction has been postulated as the “gold standard” for life-extending 

interventions. In a general sense, the payoff of caloric restriction on longevity decreases with 

animal complexity (203), from ~200% in yeast to ~100-200% in C. elegans, ~100% in D. 
melanogaster, ~30-50% in mice, and ~15% in dogs (mean, not maximal lifespan (204)), 

with significant variations between strains and experimental protocols. To get better insights 

into translatability to humans, two independent trials in rhesus monkeys were undertaken, 

with surprisingly different outcomes (205, 206). In one study (205), an extension in lifespan 

was projected based on the available data, which became significant when non-aging-related 

mortality was excluded (estimated at ~7% (207), thus smaller than the effects in dogs and 

lower organisms). In the second study (206), no such effect was observed, and the validity 

of caloric restriction as longevity intervention in non-human primates questioned (208, 209). 

Importantly, the study design differed in several key aspects (207): first, monkey breeds 

were not equivalent. Second, the first study had an ad libitum fed control group, while the 

control group in the second trial was food restricted to avoid overfeeding and excessive 

weight gain. Third, the composition of the food was not the same, with 28.5% sucrose in the 

first, and 3.9% sucrose in the second trial. Maybe as a direct consequence, co-morbidities 

were unequally distributed, for example leading to more than 40% of the control animals 
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to develop diabetes in the first compared to 12.5% in the second trial. Thus, the positive 

outcome for caloric restriction on health and longevity in the first trial could primarily be 

based on the reduction of the pathological consequences of overfeeding of a glucose-rich 

diet. Indeed, in the second study, lower body mass, lower adiposity and improved survival 

was already observed in the control animals (compared to the counterparts of the first study), 

thus even in the absence of caloric restriction, at least in the males. As a consequence, 

the survival of the male control cohort in the second study was the same as the calorically-

restricted males in the first and second trials, with no statistical differences. In females, 

no differences in body mass, adiposity and survival was seen when comparing control and 

calorically restricted groups in the second study, pointing towards a sex dimorphism in the 

response to this intervention.

The potential benefits of caloric restriction in extending lifespan by primarily reducing 

pathological effects of overfeeding or unhealthy diets can also be inferred from studies in 

rodents. In mice and rats, the lifespan extension directly correlates with the propensity for 

adult weight gain, thus very little effect in lean, and larger effects in strains that gain more 

weight, either based on the genetic background, or on differences in food composition in the 

same strains (210). Similar to the outcome of the first rhesus monkey trial, many reports of 

lifespan extension in rodents could be due to the experimental conditions with ad libitum 
overfed control mice, unhealthy dietary composition, and a marked sedentary state in normal 

home cages (83, 84, 97). Indeed, mice caught from the wild have lower body fat (~3-5%) 

than most laboratory strains (~9-22%, ~22% in C57BL/6) under standard conditions (83), 

and caloric restriction has no effect on mean longevity in wild mice (211). Even in 

laboratory mouse strains, the response of lifespan to caloric restriction is far from uniform. 

In fact, a considerable number of mouse strains react only very little, and some even 

experience a negative, life-shortening effect (212–214). Indeed, in genetically diverse mice, 

hereditability had a larger effect on lifespan compared to dietary restriction (215). Of note, 

in some of these mice, even in those experiencing increased longevity, dietary restriction 

was associated with compromised health, e.g. loss of lean mass, compromised immune 

system function, or disruption of erythroid cell populations (215). These findings are of 

obvious importance when considering the genetic diversity of humans (216). Moreover, as 

reported by McCay and colleagues in the rat strain used in their study published in 1935 

(200), a sexually dimorphic response is seen in many mouse strains, which can lead to 

diametrically opposite effects of caloric restriction on lifespan in males and females (212–

214). Strain-specific responses are not only observed in rodents, but also in D. melanogaster 
and C. elegans, in which the naturally top 10% longest-living strain obtain significantly less 

life-expanding benefits from caloric restriction compared to the bottom 10% (217, 218).

All of these results have high relevance when considering caloric restriction for human 

health- and lifespan extension, from the decreasing payoff when going from lower to higher 

organisms to the clear genetic and sex-specific contribution that shapes the response to this 

intervention. Furthermore, other issues would have to be considered, tested and validated 

(210, 219, 220). For example, it is not clear what the baseline caloric intake is from 

which restriction is calculated. How would inter-individual variations in energy metabolism 

be taken into account, both in terms of basal energy metabolism including non-exercise 

activated thermogenesis (NEAT) as well as that contributed by physical activity? Then, 
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the optimal extent of restriction, age of initiation and dietary composition are unknown in 

humans. Furthermore, adherence might be compromised by the constant, unpleasant feeling 

of hunger (221). Finally, psychological factors of prolonged caloric restriction, e.g. on 

mood, depression or aggression, and reported adverse effects, e.g. frailty, reduced cognitive 

performance, impaired wound healing and immune function will have to be dealt with (94, 

222). Based on the data obtained in rodents and primates indicating that the effect of caloric 

restriction on health- and lifespan might be rather due to an amelioration of pathologies 

triggered by overfeeding and sedentariness, a balanced and calorically-controlled diet, linked 

to adequate physical activity, likely is the healthier, safer and more efficient choice, lacking 

many of the potentially adverse effects, drawbacks and limitations of caloric restriction (or 

other specialized diets) in humans (94). Indeed, no clear evidence of longevity benefits 

of bona fide caloric restriction in humans currently exist (66, 202). Moreover, similar to 

the non-human primate data, human studies such as the multicenter, phase 2, randomized 

controlled Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy 

(CALERIE) trial indicate that health benefits, in this case in a young (21-50 years) 

population after 24 months of a caloric restriction of 25% from baseline calorie intake, 

primarily segregated to men and individuals with a higher body mass index (BMI) (223).

2.2.4 Telomere lengthening: Other interventions have been proposed, some if which 

have even been commercialized even though little to no human data on benefits exist, and 

significant adverse effects could ensue. For example, based on the shortening of telomeres 

in the aging process, telomerase gene therapy has been proposed as an anti-aging strategy, 

introducing this enzyme, which can elongate telomeres, with adeno-associated viral vectors 

(AAVs) or cytomegalovirus vector (CMV) (224). At the moment, there is no proof of 

efficacy of therapeutic benefits in humans. Moreover, several caveats should put a brake 

on such endeavors: first, telomerase re-activation is seen in ~85% of cancers (225). In 

fact, overlong telomeres are also associated with diseases in humans, e.g. familial clonal 

hematopoiesis (226), as well as increased cancer risk (227). The levels of telomerase after 

overexpression with viral vectors will be difficult to be adequately titrated in different 

cell types and tissues in order to evoke “healthy” telomere lengthening. Finally, viral 

vector-based gene therapy has inherent risks that might overshadow the so-far non-existent 

evidence of beneficial effects in human aging (228, 229). It thus is not surprising that 

such “treatments”, based on telomerase, follistatin or klotho, are not approved for clinical 

application in the USA or Europe for aging or related fields, and extreme caution is 

warranted towards commercial offers in countries with lax or non-existing regulation. 

Notably, most of these suppliers do not guarantee safety or efficacy (230).

3 Lifestyle-based interventions in health and longevity

3.1 Nature: coincidence, genetics and epigenetics

In contrast to these experimental approaches, a number of interventions, lifestyle and 

behavioral choices have been shown to provide not only a good correlation with, but even 

predictive power for human morbidity, mortality, health- and lifespan (Figure 2) (231–233).

Furrer and Handschin Page 15

Physiol Rev. Author manuscript; available in PMC 2025 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Apart from the fixed genetic endowment and the stochastic outcome of random events 
(e.g. accidents), most of the other parameters can be voluntarily changed, although some 

require a societal and political effort beyond the capability of an individual. Of note, genetic 

and lifestyle factors associate with lifespan in an independent manner, indicating that a 

healthy lifestyle can overcome genetic risks and convey health benefits even in a genetically 

“unfavorable” context (234). Moreover, environmental aspects by far exceed polygenic 

factors in the explanation of premature mortality (235).

The dynamic makeup of the epigenetic landscape can be inherited, predetermined and 

yet be pliable. For example, the epigenetic changes elicited by the experience of famine, 

e.g. the Dutch hunger winter during World War II, were imprinted in the individuals that 

experienced this traumatic event, and were transmitted to their children and grandchildren, 

in this case with detrimental health effects on disease risks and life expectancy (236). 

Obviously, you cannot chose your parents based a benevolent genetic endowment, and you 

cannot influence their environmental exposures and lifestyle choices, which can result in 

favorable or unfavorable genetic traits and epigenetic marks for health, aging and longevity. 

However, all of the lifestyle choices and behaviors discussed here will most likely result 

in epigenetic changes that can be beneficial or detrimental. While for most of these 

factors, this still has to be reliably shown, ample evidence for exercise-mediate epigenetic 

modifications with favorable health outcomes has been provided (237, 238). These effects 

can be potentiated with diet and potentially other interventions (239).

3.2 Nurture: lifestyle and other factors modifiable on the individual level

Importantly, none of the modifiable factors (including physical activity, nutrition, restorative 

sleep, no excessive alcohol, no smoking or opioid use, stress management and social 

connections) are mutually exclusive, and additive or synergistic effects can be achieved 

when combined (240–253), even at old age (254), or in regard to various diseases such 

as dementia (255, 256), frailty (257), diabetes (258), brain health (259, 260), stroke (261), 

or cancer (262). For example, while adopting one lifestyle factors reduces the mortality 

risk by 26%, the implementation of eight factors results in a lowering of the mortality 

risk of 87% (241). Of these, physical activity is by far the best intervention (“Exercise is 

Medicine” (263)), and is modifiable on a personal level with clear benefits for health and 

longevity (264–285), far beyond cardiovascular mortality (286–290), and regardless of age 

(291) or sex (292, 293). Health benefits of physical activity have already been proposed 

in ancient cultures, since two and more millennia ago (294, 295). Exercise, like aging, is 

multifactorial, affecting almost every organ and tissue in the human body (296). It thus is 

not surprising that all of the proposed hallmarks of aging are ameliorated by this intervention 

(297–300). The underpinnings of this potent effect are however unclear: one hypothesis 

proposes that the stress elicited by an acute exercise bout mimics some of the changes 

observed in aging, and, if done repeatedly in training, provoke a better protection and 

resilience against these processes (301). However, it is noteworthy that despite an apparent 

risk-protection paradox, for example due to the marked stress exerted on the cardiovascular 

system during an endurance exercise bout, regular physical activity reduces mortality risks 

and optimally prepares the body for ensuing perturbations in an effective and long-term 

sustainable manner (302). Exercise accordingly rivals existing drugs in terms of efficacy 
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to prevent and treat a number of pathologies (303–305). Inversely, a sedentary lifestyle 

is a strong and independent risk factor for many chronic diseases and mortality (264, 306–

310). Of note, most data on the effect of physical activity on mortality are derived from 

observational studies as opposed to the very rare randomized clinical trials with mortality 

as specified primary endpoint (311). Nevertheless, the wealth of data indicates a higher 

probability for a direct, causal relationship compared to mere association (311). Physical 

activity and exercise will be discussed in more detail in the sections below.

Dietary patterns and nutrition scores are likewise associated with frailty and mortality 

(312, 313). However, the effect of different diet modalities and macronutrient enrichment 

in human aging remains debated (94). Moreover, rodent studies, e.g. showing a beneficial 

effect of low protein and amino acid diets on longevity, might not be extrapolatable to 

humans (94), in which anabolic resistance necessitates higher protein supplementation 

to mitigate age-associated muscle mass loss and frailty (314–319), and in whom high 

protein diets might improve sarcopenia (320) or mortality, even in patients with chronic 

kidney disease (321). Such effects of higher protein intake are significantly boosted by 

concomitant resistance exercise training (322). In any case, it is clear that a balanced (for all 

necessary macro- and micronutrients (323, 324)) and calorically-controlled diet, possibly 

devoid of ultra-processed food (325), is crucial to lower the risk for obesity, cardiovascular 

and metabolic disorders, thereby helping to maintain health from young to old age (326–

328), in combination with adequate hydration (329). The higher relevance of the overall 

healthy eating patterns over specific macronutrient depletion/enrichment was accordingly 

highlighted in the Dietary Guidelines for Americans (DGA) 2020-2025 (327). Moreover, 

the impact of healthy food choices on mortality has been demonstrated (330, 331), in 

particular in, but not limited to elderly individuals who are often plagued by malnutrition 

and inadequate protein intake (332). In the future, individual differences in food absorption, 

metabolism and excretion might be leveraged to design precision/personalized nutrition, 

conferring additional health benefits (333, 334). However, better ways of monitoring and 

recording dietary habits will have to be devised to circumvent often unreliable self-reporting 

(335, 336).

The optimal amount of sleep is age-dependent, with a recommended duration of 7-9 hours 

per night for young adults and adults, and of 7-8 hours per night in older adults, following 

a healthy pattern with little interruptions, insomnia, snoring or other events that lower sleep 

quality (337, 338). Both shorter (<6 hours) as well as longer (>9 hours) sleep is associated 

with an increased mortality risk, most prominently for cardiovascular, but also other types 

of mortality (339–344) or dementia (345). Similar to most other lifestyle interventions, 

sleep is interdependent on other lifestyle and societal factors, for example socioeconomic 

status, depression and further psychiatric issues, alcohol dependence or a sedentary behavior 

(346). Interestingly, mortality associated with overlong sleeping seems to be predominantly 

affected by such environmental factors, while that of shortened sleeping exhibits a stronger 

heritability component (347). Overall, sleeping patterns not only contribute to the prediction 

of body characteristic (e.g. visceral adipose tissue) and disease risks (e.g. insulin resistance), 

but can inversely also be inferred by lifestyle factors to over 50% (348). Importantly, 

changes in sleeping behavior towards optimal patterns can reduce mortality risks (339), even 

Furrer and Handschin Page 17

Physiol Rev. Author manuscript; available in PMC 2025 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



when performed in the form of weekend catch-up sleep (349). Sleep quality can for example 

be promoted with endurance or resistance training (350, 351), in normal sleep as well as in 

the context of sleep disorders (352). At least somewhat related to sleep patterns, disruption 

of circadian rhythms with bright night- and dimmed day-time light is sufficient to increase 

mortality risks (353).

In the elderly, poor cognitive performance is an independent risk factor for mortality (354, 

355). Unfavorable results in cognitive tests could be the consequence of an unhealthy 

lifestyle or co-morbidities, with limited effects of cognitive training in old age (356). 

Accordingly, a causal relationship between sarcopenia and cognitive impairment (357) 

or a correlation between physical activity levels, muscle strength, working memory, and 

cognitive function have been postulated (358). Nevertheless, despite studies showing 

positive effects in healthy individuals (359), the efficacy of exercise to improve cognitive 

abilities in the elderly, in particular with already compromised function, is controversial 

(360–365), but might be boosted by multi-domain interventions that include physical 

activity (366, 367). When undertaken at earlier age, interventions, e.g. focused on healthy 

diet, physical activity and abstinence from smoking, might help to build a cognitive reserve, 

with clear benefits of lifetime intellectual and cognitive engagement (356, 368, 369). Of 

note, skeletal muscle mitochondrial oxidative capacity, a parameter that is highly pliable 

by endurance training, is associated with preserved brain structure, in particular of areas 

involved in cognition, motor function and sensorimotor integration, hinting at a correlation 

of exercise adaptations and muscle mass with brain health and structure (370–377). Finally, 

early detection and monitoring of trajectories could be improved by combining functional 

(378), imaging- and blood biomarker-based approaches (379) and might help to distinguish 

inter-individual differences present from birth/young age from those arising during aging 

(380).

Preventative health checks and monitoring can contribute to the risk assessment for 

various diseases and disease-specific and overall mortality (381), e.g. by periodical 

recording of blood pressure, body mass as well as waist-hip ratio, cholesterol, lipid and 

glucose levels. However, for many screenings, clear benefits have not been established, 

and problems with false positive and false negative findings can arise. Thus, in a healthy 

population, random general health checks might not help to decrease mortality risks (382). 

In contrast, well-designed, evidence-based health monitoring, combined with an up-to-date 

vaccination status (383, 384), will help in the prevention, early detection and treatment 

of pathologies, thereby reducing mortality risks (385, 386). Moreover, such programs can 

trigger healthy lifestyle behavioral changes in the monitored population (387).

Risk behavior can be a strong driver of mortality, for example in adolescents (388). 

However, also in later stages throughout life, engagement in risky behavior such as violence, 

substance abuse, unsafe sexual habits, or reckless driving highly increase the chance of death 

(389). In a number of countries including the USA, gun ownership is likewise associated 

with a higher mortality risk, with an influence on both homicide as well as suicide rates 

(390–393), and constituting one of the leading causes of death in children and adolescents 

(394). This is one of the reasons why life expectancy in the USA lags behind that of other 

rich countries (395).
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Smoking still is one of the strongest modifiable drivers of premature mortality, even 

though smoking rates are declining in many countries (396, 397). Interestingly, smoking 

habits could contribute to the sex differences in life expectancy (398, 399). The abuse of 

other recreational drug likewise increases mortality risks. Alcohol, for example, can not 

only directly lead to fatal pathological events (400), but also increases risk behavior such 

as reckless driving, other violent and non-violent injuries, accidents, and can exacerbate 

psychiatric disorders and suicidal behavior (401, 402). Similarly, the opioid crisis in the 

USA leads to an estimated 3.1 million years of life lost (38 years per death), and contributed 

to the decrease in life expectancy between 2019 and 2022 (390, 403).

With regard to social and mental factors, psychosocial stress and stress-related disorders 

are associated with the risk for several chronic diseases and increased mortality (404–

407). Intriguingly, a bidirectional association between sedentary behavior and psychosocial 

stress has been reported (408). In contrast, optimism shows a positive association with 

cardiovascular events, mortality and longevity (409–411). The amount and quality of social 
interactions are also predictors of mortality (412, 413). Loneliness and isolation promote 

stress, while interpersonal helping behavior decreases stress-related mortality risks (414–

416). As with other lifestyle factors such as overlong sleep, loneliness could constitute a 

causal or a surrogate marker, being potentially indicative of comorbidities such as frailty 

(417), anorexia or sarcopenia (418), socio-economic constraints or other confounders (419).

All of these lifestyle factors can be influenced by behavioral decisions. To a certain 

extent, this is also the case for sun exposure, although geographical and climate-based 

limitations exist. Insufficient sun exposure increases the risk for many pathologies, and 

ultimately leads to a significant number of preventable deaths (420–422). Notably, many 

of the health benefits of adequate sun exposure are independent of vitamin D production, 

and supplementation falls short in preventing the pathological outcomes of insufficient 

sun exposure (420, 421). Obviously, harms of excessive sun exposure, in particular the 

development of skin cancer, should be avoided, such as sunburns or inadequate protection of 

eyes and skin at times or seasons with high ultraviolet radiation levels (420, 421, 423, 424).

3.3 Nurture: societal and political aspects

The opportunities for a change in socioeconomic status depend on a variety of factors, 

many of which, for example access to high-quality and affordable education, fair income and 

taxation systems, or absence of discrimination and “glass ceilings”, can only be achieved on 

the societal and political level. Educational disparities (425) and low socioeconomic status 

increase mortality risks even when adjusted for other risk factors (426–429), with up to 20 

years of life expectancy disparities between poor and wealthy areas in the USA (430, 431). 

In fact, at least in the USA, of all social determinants, socioeconomic factors have been 

proposed to contribute most to health outcomes, length and quality of life, (about 40-47%), 

surpassing health behaviors (30-34%), clinical care (16-20%) and the physical environment 

(3-10%) in importance (432, 433). It is noteworthy that these effects apply to years lost 

and years of functioning lost (434). Moreover, an accumulation of the consequences of 

low socioeconomic status on health and life expectance over the course of lifetime has 

been proposed, with consequences of experience in childhood affecting adult health (435). 
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Thus, the childhood postcode can, at least in certain countries like the USA, predict lifetime 

risks for many pathologies reasonably well (436), together with other environmental factors 

much better than contemporary polygenic scores (235, 437). Strategies to overcome socio-

economic hurdles and provide the means to achieve a healthy lifestyle have been proposed 

but, in many cases, remain to be implemented (438, 439).

The socioeconomic status might also limit the availability of or access to affordable high-

quality healthcare in countries in which this is restricted, e.g. those without universal 

health care (233), or where inequalities in access such as to primary care physicians exist 

(440), or differences in health care spending are observed (441). Such disparities lead 

to a high number of preventable deaths (442, 443). Most prominently, vast differences 

in global probability of premature death are observed, in part driven by infectious and 

maternal health conditions more prevalent in certain regions, e.g. sub-Saharan Africa, than 

others (233, 444). Amongst the Organization for Economic Co-operation and Development 

(OECD) high-income countries, the USA is an outlier in terms of healthcare costs and 

outcomes (445–450). Both when expressed as per person or as percentage of gross domestic 

product (GDP), healthcare spending is substantially higher in the USA compared to the 

other countries. Even though the situation has improved with the historic passing of 

the Affordable Care Act, a significant proportion of the population in the USA remains 

uninsured, whereas in the other OECD countries, health care is mandatory through public 

and/or private programs. Despite the higher spending, life expectancy at birth is three years 

lower in the USA compared to the OECD average, and the share of avoidable deaths 

(normalized to 100’000 people) higher, including having the highest OECD rates for infant 

and maternal mortality (451, 452). These data illustrate that even in countries where the 

highest quality and cutting-edge medical care is available for those who can afford this, 

socioeconomic barriers and ethnic/racial disparities exist, with significant consequences on 

overall health and mortality outcomes (453, 454). Finally, as recent events have shown, 

healthcare policy should include an agenda for pandemic prevention, preparedness, response 

and recovery/reconstruction on the national as well as the global level (233). In fact, a 

chance of greater than 20% for a pandemic to occur in the next 10 years that will kill as 

many individuals as COVID-19 has been estimated (233). Related, but not limited to the 

COVID-19 pandemic, high quality education should not only aim at improving knowledge 

on the basis and application of all aspects of a healthy lifestyle, but also convey methods for 

critical thinking, assessment, and classification of scientific evidence and hypotheses, facts, 

mis- and disinformation, or fake news (455, 456).

Changing the consequences of anthropogenic climate change and air pollution are beyond 

the capabilities of individuals, and will require a coordinated effort on the nation and 

global scale. Nevertheless, clear effects on mortality have been reported. For example, the 

increasing fluctuations and extremes temperatures caused by human-made climate change 

will lead to deaths beyond affecting only the most susceptible populations, those with 

low socioeconomic status, infants and the elderly (457–460). Even in moderate climate 

zones, particulate air pollution is strongly associated with all-cause, respiratory, cancer, 

cardiovascular and other types of disease-specific mortalities (461, 462), as well as with 

brain health (463). This can be synergistically exacerbated by high temperatures (464). 
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Other types of pollution, for example environmental microplastics (465–469), endocrine-

disrupting chemicals (470, 471), or (transportation) noise (472–474) might exert similar 

effects on disease and mortality risks.

4 Age-reversal-age-extension (ARAE) paradox: more might not be better

4.1 Interference between “anti-aging” drugs and epigenetic programming

For the lifestyle- and behavior-based factors that influence mortality, additive or synergistic 

effects have been shown, in the absence of adverse interactions or side effects. This seems 

to be somewhat different for the proposed preclinical treatments and interventions, in 

which some combinations result in additive or synergistic outcomes (475), while others 

could be irreconcilable. For example, the age-reversal-age-extension (ARAE) paradox has 

been proposed for epigenetic programming, in which drugs that promote genomic stability 

are incompatible with the reprogramming that flattens the epigenetic landscape to enable 

upward movement in the Waddington landscape (184). Such effects have been shown for 

some of the proposed “anti-aging” drugs that interfere with epigenetic reprogramming, 

including metformin starting at a concentration of 10 µM (age intervention are often tested at 

100 µM), rapamycin starting at 1-2 nM (human plasma concentrations in rapamycin-treated 

patients range from 5-30 nM, and 50 nM are often used in longevity studies), or resveratrol 

starting at 20 µM (most health benefits in model organisms are seen with concentrations of 

10-25 µM) (184). Thus, even if clinical benefits were achieved, potential interactions might 

preclude combination-based approaches of these proposed therapies.

4.2 Many of the proposed “anti-aging” drugs dampen exercise training adaptation

Additionally, the ARAE paradox or analogous paradigms can be expanded to other 

unfavorable interactions. As described above, epigenetic programming is inversely 

associated with cell senescence, thus facilitated by the presence of senescent cells, and 

itself triggering cell senescence (184). The outcome of a combination therapy based on 

reprogramming and senolytics therefore is uncertain. These issues are theoretical since 

all of these approaches are still experimental. More concerning are interactions with 

proven lifestyle interventions that have been reported in human trials. These have been 

mostly shown for exercise (37, 38, 476, 477), but might also apply to others. For 

example, resveratrol blunts the positive effect of endurance exercise on cardiovascular health 

and reduces the training effect by ~45% (478–480). Metformin dampens adaptations to 

endurance (481, 482) and resistance (483, 484) training by ~50%, and increases the rate of 

perceived exertion (485). Anti-oxidants (486), e.g. high doses of vitamin C and E, reduce 

the positive effect of exercise on insulin sensitivity (487), delay recovery from endurance 

(488), and diminish peak torque and total work in resistance training (489, 490). At least in 

mice, nicotinamide mononucleotide (NMN) reduces exercise benefits on hepatic triglyceride 

accumulation, insulin secretion from islets, and glucose tolerance in diet-induced obesity 

(491). Moreover, NMN might be associated with other adverse effects, in particular in 

certain patient populations (492, 493) or the elderly (494). Finally, inhibition of mTORC1, 

a key regulator of anabolism in resistance training (495–497), with rapamycin reduces 

stimulation of skeletal muscle fractional protein synthesis rates and growth in experimental 

settings of muscle hypertrophy in rodents (498, 499) and in resistance exercise in humans 
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(500). Interference with endurance training has not been tested so far. However, mTOR is 

also activated in this type of training modality (501). Moreover, one of the key therapeutic 

targets in rapamycin therapy in cancer, a reduction of angiogenesis and neovascularization 

(165, 167), could be relevant for endurance exercise-induced vascularization of muscle 

tissue, an important process in endurance training adaptation (296). Indeed, adverse 

outcomes on other types of physiological angiogenesis have been reported, e.g. uterine 

growth and menses or wound healing in which this process can be impaired in rapamycin-

treated patients (168–170). Mechanistically, at least in part, the anti-angiogenic effect of 

rapamycin has been attributed to a positive effect of mTORC1 on the hypoxia-induced factor 

1α (HIF-1α) (165). Since different exercise modalities result in reduced physoxia in skeletal 

muscle tissue, HIF-1α plays an important role in exercise adaptation (296), which could 

be impaired by rapamycin administration. Such potential harmful interference of drugs 

with exercise obviously should be avoided (37, 38, 97, 476, 477, 502, 503). For some, 

adjusted dosage and timing have been proposed to minimize potential antagonistic effects on 

exercise adaptation. For example, it has been speculated that restricted use of rapamycin on 

non-training days could mitigate adverse effects on muscle protein synthesis stimulated by 

resistance exercise. This however is questionable, and needs to be critically tested, in light 

of the long anabolic window with increased muscle protein synthesis (up to 48 hours and 

more) after a resistance exercise training bout (504, 505). Other factors should furthermore 

be considered. First, it is unlikely that the benefits of single compounds exceed those 

elicited by the multifactorial adaptations in exercise. Thus, failure to achieve optimal health 

outcomes might ensue due to the mitigation of the broad and proven effects of exercise 

that is not outweighed by the narrow effects of single pharmacological compounds. Second, 

even besides potential direct interactions, the use of an “anti-aging” drug could lead to 

reduced adherence to and compliance with lifestyle interventions, including physical activity 

or a balanced diet. Psychological effects of a false sense of “pharmacological health”, 

seemingly induced by geroprotective agents and putative “exercise” or “caloric restriction 

mimetics”, might diminish the motivation to engage in time-consuming, long-term and 

arduous activities if an attractive alternative seems as easy as taking a daily pill.

5 Molecular biomarkers of aging

Many of the problems that affect the study and potential treatment of human aging boil 

down to the long timeframe that is needed based on human life expectancy, as well as 

on our ignorance on the evolutionary and molecular underpinnings of this process (506, 

507). Following large cohorts over years to decades in prospective clinical trials necessitates 

a high financial and logistical commitment. However, aging, a physiological (?) process 

experienced by every human, is not recognized as a disease by regulatory agencies, at least 

not at the moment. Accordingly, treatment and trials would by definition be performed in 

“healthy” individuals, with very high regulatory and ethical standards. To get around these 

issues, model organisms with shorter lifespans and lower ethical hurdles for experimentation 

are studied (80, 81). Furthermore, human aging biomarkers as surrogates to measure more 

short-term effects of treatments on aging progression are being investigated (507–511).
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5.1 Molecular clocks: from epigenetics to metabolites

A number of such molecular biomarkers of aging have been proposed, from epigenetic 

marks to telomere length, transcriptomic and proteomic signatures, or glycoprotein profiles 

(507, 509, 512–516) (Figure 3).

Epigenetic clocks are based on the observation of changes in epigenetic modifications 

from embryonic development to aging. As described above, epigenetic programming 

attempts to roll these back to a more youthful state. Initially, DNA methylation events 

measured in saliva or blood samples were used to establish models to predict “biological 

age”. Later, epigenetic clocks were also measured in other tissues and cell types. At the 

moment, a lack of understanding of the molecular causes and consequences of these DNA 

methylation changes hamper obtaining mechanistic insights beyond the current correlative 

value. Recently, histone marks of aging have been proposed to perform with similar 

predictive power as epigenetic modifications (517). Transcriptomic clocks rely on the 

assessment of age-dependent gene expression profiles, e.g. in peripheral blood mononuclear 

cells or dermal fibroblasts. Most of these clocks however have only been tested in small 

cohorts, and are marred by inherently large transcriptional noise, in particular in aging.

Advances in mass spectrometry, antibody- or aptamer-based techniques have facilitated the 

development of proteomic clocks. Plasma protein signature however can be affected by 

organ function, e.g. that of the kidney. Nevertheless, recent attempts at establishing blood 

plasma protein biomarkers based on large human cohorts have shown promising results in 

terms of predictive power for organ health, morbidity and mortality (518–530). Indeed, of 

all the molecular/-omics clocks, plasma proteome biomarkers seem most advanced, both 

technologically as well as in terms of high-throughput human application and validation 

(531, 532). The continuous improvements in detection sensitivity and proteome coverage 

of mass spectrometry and DNA aptamer-/antibody-based platforms, combined with machine 

learning algorithms, will help to eventually push this approach to broad clinical application, 

even though costs currently are still prohibitive (531). Metabolomic clocks (533) have 

likewise benefited from better mass spectrometry methods, as well as state of the art nuclear 

magnetic resonance (NMR). However, many of the metabolites identified by NMR are of 

unknown structure, limiting the usability of untargeted metabolomics, further exacerbated 

by the noise in measurement. Nevertheless, metabolomics studies that include physiological 

biomarkers show promising associations in longitudinal human trials (534). Compared to 

these approaches, attempts at creating clocks based on protein glycosylation, advanced 
glycation end products (AGE), chromatin marks or state have so far been more limited. 

Finally, as an example for a non-omics based clock, telomere analysis determines telomere 

length as a function of age (535). Methodological issues however can lead to considerable 

variation, both between individuals, tissue types, or even between sampling sites in the same 

tissue (or heterogeneity between peripheral blood mononuclear cells) (536).

5.2 Molecular clocks: current state and challenges

At the moment, no consensus on methodology and clock as standard biomarker for human 

aging has emerged. For most of these biomarkers, the physiological and functional relevance 

are unclear, the predictive value for morbidity and mortality in humans is poor, there is 
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little overlap between different types of clocks, and even between clocks of the same type 

(508, 509, 537, 538). For example, in a recent study investigating the effect of long-term 

caloric restriction in healthy adults on DNA methylation, the DunedinPACE clock showed a 

slight reduction in “biological age” in the restricted group, while two other clocks (PhenAge 

and GrimAge) did not produce this effect (539). Significant deviations between technical 

replicates of the same samples can exist, in one study with a median and maximal deviation 

of 3 years and 8 years, respectively (540). Another study of 6 epigenetic clocks using the 

same samples resulted in deviations of up to 9 years (541). Moreover, epigenetic clocks 

differ between organs and cell types (542, 543), even between the same cell type depending 

on spatial location within a tissue (544). In fact, some tissues, for example skeletal muscle, 

are only poorly represented by epigenetic clocks (545). Then, time of sampling can affect 

the results, as many epigenetic clocks exhibit circadian oscillations (546). Furthermore, 

results obtained in model organisms might be misleading. For example, the naked mole rat 

is considered as a demographically non-aging animal, with exceptional longevity and almost 

complete absence of cancer and cardiovascular diseases. Nevertheless, this animal exhibits 

epigenetic aging (547). Such findings might indicate that many of the epigenetic events that 

are measured might not correlated with bona fide aging, but rather represent physiological 

and pathological consequences to different types of events. In fact, epigenetic clocks often 

result in overlapping outcomes when comparing old and cancer cells (509). Moreover, the 

transient modulation and subsequent regression of DNA methylation marks in pregnancy 

or infection might not be a sign of increasing and decreasing “biological age” (548), but a 

normal response to these types of stressors (549). Hence, it is essential that a biomarker is 

robust and not affected by acute physiological perturbations or by technical or pre-analytical 

variability. Thus, at the moment, all of these molecular clocks will have to be used with 

caution, awaiting validation in longitudinal human studies in large cohorts (550, 551).

Efforts to standardize the development and validation of such clocks are currently underway, 

and will be indispensable for breakthroughs in this area (507, 552). More specifically, 

different types of biomarker validation have been proposed that might help to improve the 

discovery and implementation of biomarkers (Box 1) (507, 552).

First, biomarkers are especially valuable when they originate from pathways that actively 

drive aging (biological validation), rather than simply being correlated with this process. 

Second, if a biomarker targets conserved pathways and is validated in multiple species 

(cross-species validation), it is more likely to be linked to the fundamental process of 

aging. Third, the predictive value of a biomarker for future age-related outcomes (predictive 

validation) in a prospective rather than retrospective study should be assessed. Fourth, 

the assessment/analysis of the biomarker should be standardized (analytical validation), 

including the collection, storage and analysis procedure of the sample to facilitate the 

determination of the sensitivity, specificity and reproducibility of the biomarker. Finally, 

it is important to establish the clinical value (clinical validation) of a biomarker in terms 

of improving our understanding of the disease or the potential effects of an intervention 

on health outcomes. Collectively, broad validation across these dimensions is instrumental 

to ensure that molecular biomarkers are robust, reproducible, and clinically meaningful, 

and can therefore be used to predict “biological age”, health outcomes in response to an 

intervention, the risk to develop diseases and mortality.
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Furthermore, multi-omics approaches might help to improve such clocks (553), analogous 

to attempts in the field of muscle exercise biology (554). However, even with the current 

lack of a comprehensive understanding of the aging process, a multicomponent mechanism, 

with pleiotropic outcomes, affecting all cells, tissues and organs of the human body is 

more likely than a single pathway/molecule common to all somatic cells. Accordingly, 

until our knowledge improves, compound measures and indices that describe systemic, or 

at least multi-organ health, relevant for resilience and functional retention, might have the 

highest chance to monitor aging progression and provide feedback on potential interventions 

(discussed below). Nevertheless, it is conceivable that the study of theses molecular clocks 

will help to better understand the mechanisms underpinning human aging. Moreover, the 

use of integrated or combination approaches, e.g. combining plasma proteome with human 

phenome data (555) or metabolome with genomic information (556), and the increasing 

use of machine learning of large datasets might help to improve the quality of these 

clocks (509, 531, 553, 557–559). Attempts at integrating physical fitness or other lifestyle-/

behavior-related parameters in epigenetic clocks (560–562) however might be better served 

by measuring the real thing instead of a proxy of uncertain value. In fact, clinical “aging 

clocks”, based on anthropometric, (patho)physiological and molecular parameters have 

been proposed to predict healthy and unhealthy aging trajectories (563, 564). In any case, 

proven, physiological biomarkers of aging should be used to benchmark any new molecular 

biomarkers (565–568).

6 Physiological biomarkers of aging: ready for prime time!

As outlined above, physical activity remains one of the best interventions for human 

health and longevity. It thus is not surprising that the assessment of morphological, 

anthropometrical and functional parameters that describe the outcome of exercise training 

provides strong predictive power for health, morbidity and mortality. In fact, these 

physiological biomarkers of aging provide an assessment of functional aspects (569), 

relevant in everyday life, e.g. on fatigability, strength or gait speed, that affect daily tasks 

such as walking across a pedestrian crossing, moving up stairs, carrying groceries, having 

social interactions or being able to clean the apartment, thereby markedly impacting on 

quality of life and independence (570). Despite proven associations (507) and current 

indispensability as benchmarks in pre-clinical as well as endpoints in clinical trials (571), 

these parameters surprisingly often are underappreciated in contemporary discussions of 

biomarkers of aging. Thus, to increase the recognition of these measures, and to draw 

a direct comparison, the physiological biomarkers will be positioned in the proposed 

framework of aging biomarkers (Box 1, adapted from ref. 507) in this review. As outlined 

below, this will show that the physiological biomarkers of aging fulfill the requirements 

and challenges that have been put forward (552). Broadly, the physiological biomarkers of 

aging can be categorized in terms of cardiorespiratory fitness, muscle mass, muscle strength 

and power, leisure time activity, neuromuscular function and frailty. The most common 

parameters and tests will be described in more detail in the following sections. Of note, the 

deterioration of these tissues and organs, combined with neurodegeneration and a reduction 

in bone mass and mineral density, is universally observed, and thus could be considered true 
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“physiological hallmarks of aging”, with a clear and causal relationship to the decline in 

functional capacity, morbidity and mortality (Figure 4).

6.1 V̇O2 max /cardiorespiratory fitness

6.1.1 V
.
O2max: principle and testing: At the moment, cardiorespiratory fitness is 

the most studied and best predictor of morbidity and all-cause as well as disease-related 

mortality (Figure 5A and B) (572–583). Cardiorespiratory fitness is assessed by measuring 

the maximal rate of oxygen consumption V
.
O2max. This concept has been introduced by 

Archibald Hill and Hartley Lupton in 1923 (584), and developed ever since (585, 586).

V
.
O2max, sometimes also reported as V

.
O2peak (the highest recorded V̇O2 in tests failing to reach 

a V
.
O2max plateau, therefore potentially underestimating the true maximum (587, 588)), is 

a readout obtained in cardiopulmonary exercise tests that correlates with cardiorespiratory 

fitness and endurance capacity (589–593). Most often, V
.
O2max, either reported as an absolute 

rate (mL/min) or normalized to body mass (mL/min/kg) (sometimes also normalized to 

lean body or skeletal muscle mass), is typically determined in graded maximal exercise 

tests by measuring ventilation and respiratory O2 concentrations (reaching a plateau), 

often combined with determination of blood lactate concentrations (e.g. approaching or 

exceeding 10.0 mmol/L), heart rate (reaching a plateau), respiratory exchange ratio (≥1.1) 

and perceived exertion (e.g. 19-20 on the Borg scale from 6 to 20 or 9-10 on a Borg 

Category-Ratio 10 (CR10) scale from 1 to 10, even though variations between protocols 

for some of these thresholds exist (594–596). The results depend on the exercise modality: 

treadmills or cycle ergometers are commonly used, but V
.
O2max values can be acquired in any 

exercise setting that is amenable to breath-based oxygen analysis, e.g. rowing ergometers, 

all of which involve different sets of muscles. The V
.
O2max often differs between testing 

modalities, and prior task habituation: for example, runners might reach higher values on the 

treadmill, while cyclists or triathletes can excel on cycle ergometers (597). The choice of 

testing paradigm therefore depends on availability, practicality, intention for assessing task 

specificity, co-administration of other tests (for example electrocardiography might be easier 

on cycle ergometers due to minimal upper body movement) and other factors.

V
.
O2max integrates functional aspects of a number of organs and tissues that contribute to 

oxygen intake, distribution, extraction and usage (Figure 5C) (598). Intake is affected 

by pulmonary capacity and function, in part depending on respiratory muscle functional 

capacity, which can be improved by specific training even in older adults (599). 

Distribution combines cardiac output parameters, oxygen carrying capacity by red blood 

cells, blood volume and vascular properties. Extraction and usage, at least in the case of 

cardiopulmonary exercise tests, is mainly determined by the degree of tissue vascularization 

(hence the proximity of blood vessels and muscle cells), intramyofibrillar trapping of 

oxygen by myoglobin, and the rates of mitochondrial oxidative phosphorylation. The rate 

limiting step that determines V
.
O2max can be variable, and for example shift depending on the 

training state, from oxygen usage in muscle fibers in the untrained to oxygen provisioning 

by cardiac output and tissue vascularization in trained athletes.
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6.1.2 V
.
O2max: age dependence and health/mortality prediction: V

.
O2max decreases 

progressively with age, at a rate of about 7-10% per decade (corresponding to 4-4.6 

mL/min/kg) (600–602), down to an “aerobic frailty threshold” of 17.5-18.0 mL/min/kg 

that is required for an independent lifestyle (574, 603, 604). At this point, individuals 

have to utilize almost their maximum aerobic capacity for tasks related to daily life and 

independence, associated with severe physical fatigability (605). In the worst case, this 

deterioration continues to fall below 10.5 mL/min/kg, when about 30% of oxygen is 

used to maintain basal metabolic rate, potentially leading to fatal outcomes (574, 603). 

Accordingly, the assessment of V
.
O2max constitutes a strong and independent predictor of 

morbidity and mortality in different populations, young and old, healthy and clinical (574, 

576, 606). In fact, this strong link with mortality and various chronic conditions including 

heart failure, hypertension, stroke, chronic kidney disease, dementia and depression was 

consistently demonstrated in an overview of meta-analyses that included more than 20.9 

million observations (576). More specifically, having a low cardiorespiratory fitness is 

associated with a 41-53% higher relative risk for all-cause mortality compared to those 

with a high cardiorespiratory fitness (607). Strikingly, even in unfavorable conditions, such 

as abnormal glycemic status (608) or obesity, being fit is a strong predictor for reduced 

all-cause and cardiovascular disease mortality (609–612). In fact, relatively fit obese men 

(top 80% of the age-specific cardiorespiratory fitness) have a 50% lower cardiovascular 

disease mortality risk compared to normal-weight unfit men (lowest 20% of the age-specific 

cardiorespiratory fitness) (610). Indeed, cardiorespiratory fitness can mitigate risks of 

obesity in a significant manner, beyond those of unfit, normal-weight individuals (613). 

Similarly, high cardiovascular fitness can overcome an unfavorable genetic predisposition 

for dementia (614). Furthermore, cardiovascular fitness is a strong inverse predictor of 

heart failure risk irrespective of BMI (615). Importantly, even though up to 50% of the 

variability in V
.
O2max in sedentary individuals is estimated to be of genetic origin (616) 

as well as other biological and methodological factors (617), trajectories can be strongly 

affected by exercise at young and old age (618–623), and even a moderate increase by 3.5 

mL/min/kg (1 metabolic equivalent of task/MET), achievable after 2-3 months of training 

(603), reduces the risk of heart failure by 18% (572) and all-cause mortality by 11-17% 

(576, 607). Interestingly, despite exhibiting lower V
.
O2max values, older athletes can reach 

high performance levels due to the ability to perform work closer to the V
.
O2max compared 

to younger counterparts (624). Lifelong exercise habits provide most benefits to mitigate 

age-related declines in V
.
O2max (625), and can confer benefits in old age (626). However, even 

in the very old, cardiorespiratory fitness can be improved, as exemplified in the case study of 

a 101-years-old cyclist (627).

6.1.3 V
.
O2max: Additional tests, benefits and alternative assessment methods: 

A cardiopulmonary exercise test can provide additional health-relevant parameters, and can 

easily be expanded (589–592, 628). For example, this test often includes a measurement 

of the rate of carbon dioxide production (V
.
CO2). The respiratory exchange ratio (RER, 

V
.
CO2 divided by V

.
O2) indicates fuel utilization, from oxidation of fatty acids (RER approx. 

0.7) to glucose (RER=1.0). Thereby, the metabolic preference and transition during a 

cardiopulmonary exercise test can be assessed, and the switch to anaerobic metabolism 
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observed when the RER exceeds 1, sometimes used as exhaustion endpoint criterion. 

The RER, heart rate, minute ventilation V
.
E (composed of the tidal volume multiplied 

by the breathing frequency), or work rate can be set into relationship to V
.
O2 and 

V
.
CO2, thereby providing insights into the relative efficiencies and potential deficiencies 

of the cardiopulmonary system, e.g. by calculating the ventilatory equivalents VEqO2 

and VEqVCO2 (corresponding to the ventilation required to take up or exhale a given 

amount of O2 and CO2, respectively, by dividing V
.
E by V

.
O2 or V

.
CO2). Additional health-

relevant parameters are obtained from simultaneous (and/or post-exercise) acquisitions of 

stress electrocardiograms (629, 630), blood pressure (631, 632), pulse oximetry or arterial 

blood gas measurements (633), cardiac magnetic resonance imaging (634), heart rate 

response and recovery (635–637), heart rate variability (638, 639), invasive cardiopulmonary 

hemodynamics with a pulmonary artery catheter in the internal jugular vein (640), or other 

parameters. Furthermore, timed blood sampling and determination of lactate levels help to 

pinpoint the lactate threshold, or, when combined with V
.
CO2 measurement, the anaerobic 

threshold, even though this concept remains somewhat contentious (641, 642). Outside of 

clinical testing, V
.
O2max correlates with endurance exercise capacity, but itself is only one of 

the key parameters besides fractional utilization of V
.
O2max (related to the individual lactate 

threshold and critical power), exercise economy, and physiological resilience to determine 

performance (643–645). Optimally, all four are measured and optimized in athletic training. 

It is important to point out that many of the clinically used techniques, parameters and 

readouts have emerged from the study of elite athletes (646), who, even though few in 

numbers (647), represent the upper limit of human performance capabilities (296, 648). 

Of note, various protocols exist to estimate V
.
O2max in other settings, including submaximal 

efforts, from maximal and resting heart rates, or based on the Fick equation with cardiac 

output and the arteriovenous oxygen difference as parameters, e.g. in health-compromised 

individuals. Therefore, readouts for cardiorespiratory fitness can also be acquired without 

measuring actual V
.
O2max (649). For example, time on treadmill, peak speed, incline, work 

performed and other parameters have been used to assess cardiorespiratory fitness, showing 

good correlation with measured maximal oxygen uptake and with mortality risks (650–658). 

Other parameters such as sex, age, BMI, waist circumference, resting heart rate, physical 

activity levels, and smoking status can be used to approximate the state of cardiorespiratory 

fitness (659, 660). In fact, over 28 equations have been proposed, using overlapping and 

distinct metrics, all of which significantly correlate to measured cardiorespiratory fitness, 

albeit with differences in accuracy (661). Even though measured cardiorespiratory fitness 

provides better discriminative ability, estimated cardiorespiratory fitness is a valid indicator 

of health status and mortality risks (660, 662–664). For example, activity-induced oxygen 

uptake, expressed as MET (3.5 mL O2/min/kg), can be calculated with the heart rate index 

(the ratio of maximal to resting heart rate during and before an activity, respectively) (METs 

= (6*heart rate index)-5) (582, 665).

6.2 Relative lean/muscle mass

6.2.1 Body mass index and the obesity paradox: Historically, even though 

controversial (666), an “obesity paradox” has been reported, indicating reduced mortality 

of patients with an elevated BMI (expressed in kg body mass /m2 height) beyond the normal/

Furrer and Handschin Page 28

Physiol Rev. Author manuscript; available in PMC 2025 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



healthy range (667). Different explanations have been put forward for this observation, for 

example based on data indicating that when using measures of fat depot distribution, the 

“obesity paradox” disappears (668). Since such measures are independent of differences in 

muscle mass, they support the muscle mass hypothesis, suggesting that only those patients 

for whom the elevation in BMI is to a significant extent caused by higher muscle mass, 

experience the health benefits, at least in certain pathologies and populations (667, 669–

672). The BMI thus is an imperfect marker for obesity (673). Indeed, the relative amount 

of lean or, better, actual skeletal muscle mass (often normalized to body mass) is a much 

better predictor of all-cause and disease-specific mortality (674–685). Muscle mass is of 

particular significance in aging (sarcopenia) and cancer (cachexia), with strong correlations 

to functional capacity, quality of life, morbidity and survival (686–694).

6.2.2 Relative lean/muscle mass: methods: In contrast to the BMI, which can 

easily be measured using a scale and a measuring tape, determination of the vastly more 

meaningful body composition requires specialized equipment, with variances in preciseness 

and accuracy (695–705). Moreover, these methods have different capabilities in determining 

compartments such as adipose-tissue free mass (ATFM, body mass – adipose tissue 

mass), fat-free mass (FFM, residual mass (organs such as liver, pancreas etc) + fat-free 

skeletal muscle mass + bone mass), lean soft tissue (LST, residual mass (organs such 

as liver, pancreas etc) + fat-free skeletal muscle mass) or actual skeletal muscle mass, 

which contributes about 45%-50% to fat-free mass (706). Sometimes, compartments are 

normalized to other anthropometric measures, e.g. in the fat-free mass index (FFMI) that is 

indexed to height (expressed in kg FFM / m2). Commonly used methods to measure muscle 

mass or surrogates thereof include (707–711): Skin fold measurements with a measuring 

caliper, in which body composition is inferred from the thickness of subcutaneous fat in 

different body areas; circumference of various muscles such as mid-upper arm or calf; 

bioelectrical impedance analysis (BIA), recording the electrical resistance with multiple 

electrodes and in multi-frequency measurements in a body segment-separated manner; dual 

energy X-ray absorptiometry (DEXA), in which spectral imaging using two X-ray beams 

with different energy levels allows the acquisition of body composition data in total body 

and regional segments (including assessment of bone mass and mineral density); ultrasound, 

applied to multiple body regions similar to the skin fold calipers; quantitative magnetic 

resonance (QMR) or magnetic resonance imaging (MRI), in which magnetic fields are 

used to quantify, and in the case of MRI also visualize, fat and lean mass independent on 

hydration status; hydrostatic weighing or air displacement plethysmography, using object 

displacement of water and air, respectively, to calculate body density and subsequently 

composition; computed tomography (CT), in which multiple X-ray measurements are 

processed for a tomographic reconstruction of a body, sometimes combined with positron 

emission tomography (PET) to assess metabolic activity such as glucose metabolism. 

Finally, in deuterated creatine dilution, skeletal muscle mass is determined non-invasively 

since almost 98% of the creatine pool is found in muscle, co-localizing with sarcomeric 

structures, which are the functional components of muscle (712–714). Therefore, skeletal 

muscle mass measured by this method strongly correlates with strength, functional capacity 

and mortality risks (715, 716). As in all areas of medical diagnosis (717), the use of 

machine learning techniques and artificial intelligence might help to improve the predictive 
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strength of imaging-based techniques for body composition in the future (718). Moreover, 

improvements and/or the acquisition of additional parameters will further boost the use. For 

example, the phase angle (PA, angular transformation of the ratio of capacitance (Xc) to 

resistance (R) - arc tangent (Xc/R)*180°/π) measured at 50 Hz in BIA is an indicator of 

cell health and function, and correlates with disease risk and mortality (719–721). However, 

as with most of these methods, better standardization and more normative data for different 

instruments and populations will help to improve this measure (722–724).

6.2.2 Relative lean/muscle mass: adipose tissue content and distribution: Of 

note, costly bespoke determinations can sometimes be circumvented by leveraging other, 

already existing radiological images, e.g. to estimate temporalis muscle thickness in cranial 

imaging as a marker for muscle mass predictive of disability and mortality (725). As 

an added benefit of some of these methods, information on adipose tissue distribution 

(e.g. abdominal vs. subcutaneous), or even fat content of different organs (726) (including 

myosteatosis (727) or intermuscular adipose tissue (728)) is acquired, both of which are 

linked to pathological processes in cardio-metabolic diseases (729), all-cause and cause-

specific mortality (730). For example, the determination of the adipose-free muscle volume 

and the percentage of intramuscular fat in the thigh muscle by MRI can be compared 

to reference values and provides predictive data on health (731), or, at least in certain 

populations, on brain volume (732). Adipose distribution however can also be estimated by 

the much cheaper and simpler waist-to-hip circumference ratio, with good correlation to 

morbidity and mortality risks (733), which can develop in different trajectories compared 

to the BMI (734). Other parameters that should improve on the use of BMI have been 

proposed, including the Weight-adjusted Waist circumference Index (WWI, calculated by 

dividing waist circumference by the square root of body mass) (735, 736), the Body 

Roundness Index (BRI, calculated as 364.2 − 365.5 × √(1 − [waist circumference in 

centimeters / 2π]2 / [0.5 × height in centimeters]2)) (737), or height-normalized abdominal 

body composition (738). The combination of muscle strength reduction and fat mass gain, 

as observed in sarcopenic obesity, might constitute an additional burden on health and 

mortality (739, 740), for example for the risk of dementia (741). Regardless of the method 

used, it is undisputed that strong associations of body composition with aging and health 

exist (742, 743), e.g. in terms of risk for frailty in sarcopenic obese and pre-sarcopenic 

individuals (744), in health and pathologies, for example non-alcoholic fatty liver disease 

(NAFLD) patients (745, 746). Notably, the genetic contribution to muscle mass and function 

are estimated at 30%-50%, implying a majority of the variations to be modifiable by 

environmental factors (747). Nevertheless, despite the recent arrival of new anti-obesity 

drugs, the rising rates in overweight and obesity are observed world-wide, accompanied 

by the corresponding obesity-related pathologies, necessitating effective and aggressive 

measures targeting environmental and lifestyle factors (748).

6.3 Muscle strength and power

6.3.1 Muscle force trumps mass: In recent years, it has become clear that an 

exclusive focus on muscle mass is insufficient to describe sarcopenia (muscle wasting in 

the aging process) and other diseases (749). In fact, the term dynapenia (or powerpenia) has 

been proposed to describe the functional loss of skeletal muscle, which can be dissociated 
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from changes in body or muscle mass (750–753). In aging, the loss in power is greater 

than in strength, and both are disproportionally larger than the reduction of muscle mass 

(754–756). Chronologically, the decline in power, strength and mass is accordingly found 

in this order (756). It therefore is no surprise that the decrease in muscle quality, a measure 

of strength or functionality relative to muscle mass, strongly correlates with mortality 

and health in aging (757–759). As a consequence, therapies that only ameliorate muscle 

mass, but not functional aspects, will most likely be suboptimal (760–762). Indeed, muscle 

strength (maximal force, expressed in N, sometimes reported as torque expressed in Nm to 

describe force application for rotational movement of a joint) (763–771) and power (scalar 

product of the vectors of force and shortening/lengthening velocity of the muscle (772, 

773), revealing force production over time or speed of force production, expressed in Watt) 

(774–776) have been closely associated in an inverse manner with all-cause mortality (678, 

751, 777–781) not only in healthy individuals, but also patients such as those suffering from 

diabetes (782).

6.3.2 Methods to determine muscle strength and power: hand grip and 
more: The determination of handgrip strength with corresponding dynamometers is 

one of the most common methods, facilitated by the ease of use, and the availability 

of ample normative data (Figure 6), for which values are often expressed in relation 

to body height and mass, handedness and other anthropometric measures, with strong 

correlation with future morbidity and mortality (783–792) as well as potentially a number of 

sociodemographic, anthropometric behavioral and psychological factors (793).

Intriguingly, handgrip strength has predictive power for processes beyond muscle status, 

e.g. extending to frailty (794), glycemic measures (795), hypertension (796), brain (791, 

797) and cardiovascular health (798), bone mineral density in women (799), or self-assessed 

quality of life (800), and associates with a wide variety of anthropometric, morphological 

and functional factors (801), or the risk for falls (802). The values obtained with hand grip 

dynamometers can be approximated with simple tests such as polyethylene terephthalate 

(PET) bottle opening or newspaper tear-off in old populations, albeit in the absence of 

broad, normative datasets (803). However, the measurement of a single strength component 

might be insufficient to capture more complex or different tasks, for example those related 

to activities that involve both upper and lower body functions (804, 805). Therefore, 

specialized, mostly isokinetic dynamometric equipment is used to measure the strength 

or power of single joint movements (e.g. knee extension), or multi-joint and -muscle 

involvement such as acquired with mechanographical force/power plates in plyometric 

exercises. Furthermore, standard isotonic gym equipment can be leveraged to assess 

parameters such as the one-repetition maximum (1RM), maximum voluntary isometric 

contraction (MVIC), muscular endurance (isometric or velocity loss with increasing number 

of repetitions), dynamic strength index (bar velocity related to force production), reactive 

strength index (RSI, divide drop jump height by ground contact time) and others. In a 

frail population, sit-to-stand tests (for example timing of 5 repetitions of sit-to-stand-to-sit 

movements without the use of arms and hands, or number of sit-to-stand repetitions in a 30 s 

window) or similar interventions might already be sufficient to estimate strength of the trunk 

and lower extremities. These measurements can be combined with electromyography (EMG) 
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to obtain additional information on neuronal activation, action potential transmission, motor 

unit recruitment and fatigue (806, 807). Moreover, clinical relevance can be expanded by 

the utilization of tensiomyography (speed of muscle contraction under isometric conditions) 

and myotonometry (measurement of reaction to a short mechanical impulse), providing data 

on muscle composition, architecture and viscoelastic properties (e.g. muscle tone, stiffness 

and elasticity), respectively (808). Such approaches might be complemented and expanded 

with wearable super-resolution myographic sensors in the future (809). Of note, integrated 

approaches, for example assessment of muscle mass and strength, potentially combined with 

other parameters such as a nutritional score, might increase the predictive power, e.g. for 

cancer mortality (810).

6.4 Step count, leisure time physical activity and sedentary behavior

6.4.1 Occupational and leisure-time physical activity in the modern world: 
The evolution of humankind as persistent hunters is not reflected in the engagement in 

physical activity in modern societies, with various detrimental consequences on health (264, 

296). The amount of physical activity is profoundly different between professions, which 

can result in beneficial outcomes, e.g. the lower incidence of coronary heart disease in 

conductors, constantly climbing and descending stairs, compared to the sedentary drivers of 

double-decker buses in London (811–814). Overall, ~80% of jobs in the USA are estimated 

to be predominantly sedentary (815).

Discrepancies also exist for non-occupational leisure time activity and a big proportion 

of the general population do not meet the current WHO guidelines recommending 

at least 150-300 min of moderate aerobic activity and regular muscle-strengthening 

exercises (816–821). For example, only 22.8% out of 2’629’508 adults adhering to muscle-

strengthening exercise guidelines (822), or less than 52%, 35% and 28% of the general 

USA population met endurance, resistance, and combined endurance and resistance training 

recommendations, respectively, in the year 2018 (823). Reaching the activity levels defined 

by these guidelines confers substantial health benefits and lowers mortality risks (824–

827), e.g. up to 31% on all-cause mortality in elderly individuals (828), independent 

of cardiorespiratory fitness (829, 830). Importantly, even relatively small shifts towards 

physical activity behavior can elicit beneficial effects (831), which can extend to non-muscle 

tissues and functions, e.g. cognition in acutely hospitalized older adults (832) or cancer 

(833). In fact, all aspects of resilience (834) and intrinsic capacity (835, 836), comprising 

locomotor (837), cognitive (838), psychological, sensory, and vitality capacity (839), 

are positively affected by physical activity (840). However, while positive outcomes are 

already seen at lower doses, additional value can be achieved with higher intensity/volume/

frequency (841), albeit with diminishing returns (842–844). Inversely, a negative association 

of leisure-time, non-occupational physical activity to morbidity as well as mortality has been 

demonstrated (845–857). For example, a strong correlation between leisure-time physical 

activity and the risk for a number of cancers has been found in large cohorts (858–861), 

with a potential involvement of the exercise-remodeled immune system in this context 

(862). Importantly, the impact of physical activity is seen regardless of the time-of-day of 

performance (863), indicating that activity can mitigate potential adverse effects of circadian 

timing (864). Similarly, physical activity can overcome other markers of low functionality, 
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e.g. ameliorating mortality risks in individuals with low handgrip strength, or preventing 

cardiovascular disease incident across all handgrip strength levels (865).

Of note, sedentary behavior (as in time sitting), which is on the rise in many societies, 

should be independently assessed from other forms of inactivity, due to the marked negative 

effects of time sitting on health and disease risk that can be distinct from those arising 

from minimal physical activity (866–869). Accordingly, sedentary behavior can increase 

mortality risks, e.g. those for all-cause and cardiovascular diseases (870–874), which at least 

in part can be blunted by physical activity, in particular when performed at high intensity 

(875–881).

6.4.2 Methods to measure leisure-time physical activity: from step count to 
more sophisticated wearables: Leisure-time physical activity and sedentary behavior 

data are often collected by self-reporting, with the corresponding limitations on data 

accuracy and standardization. More recently, advances in the use of wearable devices have 

helped to acquire such behavioral data in a more objective and quantifiable manner, and 

have confirmed the positive effect of physical activity on mortality risks (866, 881–885). 

Daily step count is the simplest parameter for which a good association with morbidity 

and mortality has been demonstrated (886–895), e.g. on incident risk of dementia (896) 

or of depression (897). More sophisticated accelerometers however allow a detailed and 

fine-grained acquisition of different types of activity (or sedentary behavior) in relationship 

to health and mortality (866, 898–900). For example, the personalized activity intelligence 

score assesses the cumulative fluctuations of heart rate of the most recent 7 days as a 

measure of relative intensity and energy expenditure of weekly physical activity, shown 

correlate with mortality risks (901, 902). Such refined manners of acquisition of behaviors 

are of particular importance to quantify time sitting (903). At the moment, wearables-based 

assessment of physical activity is widely deployed to capture endurance training-type 

of activities, using actigraphy, accelerometry, GPS tracking and heart rate measurements 

besides other sensors, even though issues with heterogeneity, accuracy and standardization 

still exist (904). However, strong health and mortality benefits also arise from resistance 

training (905–921), even at lower intensities/volumes (922), for which corresponding 

wearables that objectively and accurately quantify the work performed and actual (non-

resting) exercise time are still under development (923). In fact, muscle strength and 

cardiovascular fitness are independent predictors of mortality, with best outcomes when 

performed in combination (924–927).

6.5 Gait speed/frailty parameters

6.5.1 Neurodegeneration and sarcopenia are the major drivers of loss-of-
independence, morbidity and mortality: In the absence of any debilitating disease, 

neurodegeneration (928, 929) and sarcopenia (257, 930–933) are two of the main factors 

that precipitate loss-of-independence, decreased quality of life, morbidity and mortality in 

aging (934). The effects caused by these two processes are exacerbated by compromised 

cardiovascular function (935–938) and loss of bone mass and mineral density (939). 

Osteopenia/osteoporosis is a prominent issue in postmenopausal women (940), but should 

not be overlooked in men (941). Of note, bone mineral density correlates with lean 
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body mass and muscle strength (747), and can be improved by exercise, in particular 

in combination with the intake of dairy products (942). Similarly, neurodegeneration 

and sarcopenia (and inversely physical activity) are mutually linked (943, 944), e.g. 

in the reduction in vestibular and proprioceptive abilities, leading to altered gait, and 

decreased senses of balance and motor coordination. With the progressive loss of the 

functional capacity caused by these events, a vicious cycle is initiated and fueled (945), 

in which insecurities in gait and balance reduce the drive for physical activity (and social 

interactions), which, in turn, accelerates neuronal and muscle degeneration (Figure 7). In the 

worst case, falls occur (946), with the risk of fractures, immobilization and hospitalization, 

further promoting this cycle through a “catabolic crisis” (947–950), ultimately culminating 

in a broad hospital-associated deconditioning (951) and hospital-acquired complications 

(952).

6.5.2 Gait speed and other tests for frailty and neuromuscular functionality: 
Based on the deterioration of the neuromuscular system, it is of little surprise that 

functional capacity parameters depending on neuromuscular functionality are predictors of 

an independent lifestyle, morbidity and mortality, as seen in the example of gait speed (283, 

953–961). Gait speed, representing voluntary locomotion, can easily be assessed with a stop 

watch, pedometers, or accelerometers (962). Additional information can be derived from 

a more sophisticated analysis of gait, in which for example speed, cadence, stride length, 

step width and other parameters describing footprint and gait dynamics are acquired, and 

collectively allow a more comprehensive assessment of aging-related alterations in gait (963, 

964). Such data can be obtained with different methods, including pressure measurements, 

motion capture or wearable sensors (965). Gait speed trials often are combined with other 

tests of frailty, for example cognitive and sensory function, psychological and social aspects, 

balance and motor coordination, mobility and flexibility, muscle strength and endurance, 

muscle and body mass loss, fatigability/exhaustion, and integrated tasks of gross and fine 

motor skills (966–969). Such compound frailty assessments are predictive of mortality, 

as well as incident disability, falls, hospitalization and health care-dependence (970–973), 

even in long-term trajectories (974). For example, strength, balance and gait speed can 

be used to predict the risk of incident dementia (967, 975). However, even simple tests 

such as sit-to-stand time (976), sit and rise from the floor (977), or 10-second one-legged 

stance performance (978) can be used to estimate frailty, functional capacity, mortality and 

survival. Stair descendence phenotypes can reveal deficits in balance, coordination, muscular 

agility and strength, and thereby help to predict the risk of incident falls (979). A myriad 

of test batteries and protocols have been established, aiming for a test coverage of a broad 

and representative range of frailty, impinging on vulnerability to adverse events, reduced 

resilience towards stressors, and loss of functional capacity (956, 970, 971, 980), all of 

which clearly associate with the process of (advanced) aging (981, 982).

7 Classification of biomarkers of aging

The aforementioned physiological parameters belong to a group of biomarkers of aging, 

some of which, e.g. the 6 min walk test, have already been accepted by the FDA as 

surrogate in clinical trials (571). In terms of application, physiological biomarkers fulfill the 
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criteria of multiple categories (507). 1.) Predictive biomarkers: the physiological biomarkers 

have a strong and independent predictive power for all-cause mortality, and various 

disease-specific risks. 2.) Prognostic biomarkers: for most of the functional/physiological 

biomarkers, predictive power is not only limited to healthy individuals, but extends to 

patients in very diverse settings, for example as a measure for fitness for and outcome of 

surgery (983–988), clinical outcomes in heart failure (989), coronary bypass grafting (990), 

intensive care unit hospitalization (991, 992), frailty (971, 993–996), cancer mortality (997, 

998), sarcopenia (999), biliary sepsis (1000), liver transplantation (1001), hospitalization 

secondary to COVID-19 or other infectious diseases (1002), potentially linked to reduced 

respiratory function (1003), or cognitive impairment and dementia (1004). Notably, the 

corresponding interventions, in particular exercise training, can be used in a prognostic 

manner in prehabilitation to mitigate loss of muscle mass and function, increase resilience, 

reduce adverse outcomes and shorten the duration of hospital stays (1005). 3.) Response 

biomarkers: the physiological biomarkers not only predict morbidity and mortality, but 

also react to interventions that improve prospects, first and foremost physical activity, 

the most robust intervention known to date to promote healthy aging. 4.) Surrogate 

endpoints markers: due to the extraordinary correlation between physiological biomarkers, 

biological age, morbidity and mortality, interventions aimed at the aging process should 

be benchmarked against these measures, whenever possible in a comprehensive manner. 

For example, weight loss caused by caloric restriction is not expected to change absolute 

V
.
O2max, even though oxygen consumption normalized to body mass can increase, or could 

lead to a reduction in lean body mass if performed in the absence of concomitant resistance 

training (1006, 1007). However, leisure-time activity, number of steps as well as gait speed 

and other frailty markers could improve, at least based on extrapolation of data from 

mice. 5.) Discovery biomarkers: physiological biomarkers describe the integrated function 

of various tissues, organs and cell types, and thus reflect the multifactorial processes 

and complexity of aging. However, the underlying mechanistic principles are still poorly 

understood, and therefore harbor an enormous potential to reveal novel insights into the 

benefits of interventions that improve these biomarkers, as well as the patho-etiology of 

aging-linked processes.

7.1 Assessment of biomarkers of aging

Four main criteria for ideal biomarkers of aging have been put forward (507). The 

physiological biomarkers, in particular in combination, fulfill all of these. 1.) Measurement: 

the assessment of all of the physiological biomarkers is minimally invasive, and, maybe 

with the exception of self-reporting-based values, highly reliable. Therefore, longitudinal 

assessment, life-long, from young to very old age, is feasible. 2.) Aging relevance: the 

physiological biomarkers not only predict morbidity and mortality, but also provide a 

snapshot on functional capacity, resilience and (organ) health. 3.) Predictive power for 

functional aspects of aging: this is clearly provided by the physiological biomarkers, 

extending to practical and tangible aspects in daily life, e.g. impaired gait speed resulting 

in the inability to cross roads (1008). 4.) Responsiveness to longevity interventions: all of 

the physiological biomarkers are pliable, thus, responsive to interventions, in particular those 

with most benefits on the aging process (1009).
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7.1.1 Feasibility and validity: The determination of physiological biomarkers, 

including V
.
O2max, muscle mass and strength/power, gait speed, locomotor activity and 

frailty are minimally invasive, and non-lethal in model organisms, at least in higher 

vertebrates. A longitudinal assessment therefore is possible, even desirable to monitor 

trajectories over time, facilitated by the short time and ease of acquisition. Importantly, 

these measurements are non-age-accelerating – in fact, the tests, at least in some cases 

like V
.
O2max, muscle strength/power, or gait speed represent the intervention, and therefore 

contribute to the beneficial effects. Then, physiological biomarkers are age-sensitive, with 

high correlation with chronological age. However, in contrast to other molecular biomarkers 

for which accuracy for chronological age seems to come at the expense of predictive power 

for mortality and age-associated health outcomes, physiological biomarkers have been 

demonstrated repeatedly to provide very accurate prediction of morbidity and mortality, 

and possibly “biological age” (Figure 8).

Importantly, in contrast to most contemporary molecular biomarkers, extensive 

epidemiological, prospective, longitudinal and cross-sectional data in humans exist for 

the physiological biomarkers in that regard. Thus, age-sensitive criteria are fulfilled: 

good prediction of all-cause mortality, as well as correlation with multiple age-sensitive 

features, i.e. age-associated morbidities, by providing information about functional aspects 

of multiple systems, integrating different signals, and incorporating heterogeneous aspects. 

Two types of information are provided: integrity and resilience of tissue/organ function, 

as well as, in the case of longitudinal assessment, rates of progression of deterioration (or 

mitigation/reversion by interventions).

7.1.2 Mechanistic criteria and biologic plausibility: In the absence of confounding 

age-associated diseases, inevitable neurodegeneration, sarcopenia, and functional decline in 

the cardiovascular system are the main drivers for elderly individuals to lose independence, 

being admitted to nursing homes, and experience increased morbidity and mortality (1010). 

Collectively, these processes promote an inactive lifestyle due to increased perception of 

effort, insecurities (e.g. related to a decline in balance and motor coordination), leading to a 

vicious, self-reinforcing cycle. In the worst case, elderly individuals fall, and the ensuing 

fracture, facilitated by osteopenia/osteoporosis (in osteosarcopenia) (1011), potentially 

exacerbated by osteoarthritis (in musculoskeletal failure) (1012), leads to immobilization 

and hospitalization. Inversely, an active lifestyle, in particular when enriched by endurance, 

resistance, balance/agility and flexibility training (1013), is the best, indeed so far only 

intervention to mitigate sarcopenia and neurodegeneration (1014), and one of the best to 

counteract osteopenia/osteoporosis and boost cardiovascular function. In fact, endurance, 

strength and flexibility training have all been shown to improve mortality risks (1015, 

1016). Fall risks are reduced by strength and balance training affecting posture, gait and 

coordination, resistance training improving sarcopenia and join mobility, and cognitive 

exercises boosting spatial awareness and attention (1017). Thus, a clear anti-aging effect 

has been demonstrated, impinging on various deleterious processes that affect health- and 

lifespan.
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The aforementioned physiological biomarkers exhibit a well-described deterioration with 

“biological age”, e.g. in terms of muscle mass and strength, cardiorespiratory function, 

gait speed or frailty. While the latter are primarily affected in old age, the former exhibit 

an association starting at younger ages. Thus, even though the pathways and molecular 

underpinnings of, and the potential health-benefits elicited by interventions aimed at these 

biomarkers are still only poorly understood, a strong biologic plausibility exists that links 

functional resilience of the cardiorespiratory and neuromuscular systems to aging, morbidity 

and mortality, and most likely impinge on fundamental aspects of aging. Of note, the 

effects of the interventions that are directly related to these biomarkers transcend health and 

function of the primary target tissues. Thus, exercise-based interventions not only improve 

muscle and cardiovascular function, but affect almost every organ and system in the human 

body in a clinically relevant manner (297, 303, 1018, 1019). For example, muscle mass and 

strength, as well as the amount of physical activity are negatively associated with the relative 

risk for dementia and a decline in cognitive function, brain structure, neurodegeneration 

and mental health (1004, 1020–1031), even when performed in an irregular manner, e.g. in 

“weekend warriors” (943, 1027, 1032–1034). Such activity patterns, concentrated at one or 

two days per week, also confer health benefits in other domains, for example cardiovascular 

disease incident rates (1035). More regular exercise-based interventions obviously also 

mitigate these risks (1036), potentially even changing life-long trajectories if initiated early 

in life (380, 1004, 1037–1039). Such youth-specific programs could affect life history and 

thereby influence health aging (1040, 1041).

7.1.3 Generalizability: Most of the proposed physiological biomarkers can be assessed 

in model organisms, and at least some show a remarkable similarity to humans, e.g. 

pliability of V
.
O2max (1042), association of V

.
O2max with longevity (1043), or deterioration of 

balance and gait in mice, amenable to amelioration by exercise (1044), if certain biological 

and methodological issues are considered (97, 1045). Thus, these biomarkers can be studied 

mechanistically in multiple species, with a high translatable potential (1046). In humans, 

importantly, these biomarkers have been validated in different clinical populations and 

demographics (573, 792, 889, 1047), even across different age groups (573, 774, 1048). For 

example, cardiorespiratory fitness in youth predicts age-associated diseases at old age, e.g. 

for site-specific cancer (1049). Similarly, mid-life grip strength correlates with functional 

capacity and resilience at old age (1048), or youth sport participation with sarcopenia 

(1050). Furthermore, these parameters, and the corresponding interventions, are equally 

valid from the youngest (1051) to the oldest of the old (767, 954, 955, 1052–1062), as 

exemplified by a case study of a 71-years-old world champion powerlifter who started 

resistance exercise at the age of 63 years (1063), or a late bloomer octogenarian triathlete 

(1064). Of note, benefits are found even in suboptimal conditions, e.g. obesity (609, 

1065), Alzheimer’s disease (1066), schizophrenia (1067), poor sleep (352, 1068, 1069), 

hospitalization (1070), rheumatoid arthritis (1071), hypertension (1072–1074), pulmonary 

hypertension (1075, 1076), heart failure (1077) and cardiac rehabilitation (1078), chronic 

obstructive pulmonary disorder (COPD) (1079–1081), diabetes (1082), chronic kidney 

disease (1083, 1084), depression (1085, 1086), or even multimorbidity (1087). At the 

moment, very few pathological context contraindicate the use of physical activity, for 

example as hotly debated in myalgic encephalomyelitis/chronic fatigue syndrome (ME/
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CFS), in which patients can experience a post-exertional malaise lasting for several days 

(1088). Nevertheless, physical activity levels are directly correlated with all-cause mortality 

even in individuals with other risk factors, such as cigarette smoking or early parental 

death (1089, 1090). Inversely, physiological biomarkers can be uncoupled from the genetic 

background, and accordingly are pliable even between monozygotic twins (1091–1094). 

Moreover, consensus is emerging that absolute non-responders to physical activity do not 

exist, inasmuch such individuals might respond to different training paradigms, intensities or 

volume, or might have been misclassified as non-responders due to measurement and other 

technical errors (296, 1095–1099). This extreme clinical generalizability is different from 

many of the proposed pre-clinical interventions aimed at life- and/or healthspan extension, 

many of which only work in specific mouse strains (e.g. caloric restriction (212)), sex 

(e.g. the majority of pharmacological approaches (129)), or experimental conditions (e.g. 

pharmacological approaches (38, 476) or caloric restriction (83, 208–210, 219)).

At a glance, some of the existing data on physiological biomarkers seem counterintuitive 

and suffering from similar drawbacks: for example, even though women have markedly 

lower V
.
O2max (Figure 5B) or grip strength (Figure 6) than men, the former outlive the latter 

in most societies in terms of average and maximal life expectancy (1100). Surprisingly, 

opposite to this improved survival, frailty is more common in women than men, suggesting a 

sex-based frailty-mortality (or health-survival) paradox (1101–1106). Biological differences 

certainly contribute to these observations, e.g. in terms of immune system function or the 

prevalence of life-threatening vs. non-life-threatening chronic conditions (1107). Similarly, 

considerable sex-based differences in the exercise response and performance exist (1108). 

However, psychosocial, societal, socioeconomic (1109) and educational factors should not 

be neglected, for example sex differences in the number of doctor visits, inclusion in clinical 

trials, risk aversion, or engagement in healthy nutritional and other lifestyle behaviors. 

Indeed, at least in some countries, the survival gap between women and men is narrowing 

(1110), potentially driven by behavioral changes, socioeconomic factors and education 

(1111). Curiously, women also derive greater benefits from equivalent doses of leisure-time 

physical activity than men, at least in terms of reduction of mortality (1112). Even though 

this interesting phenomenon still is only rudimentarily understood at the moment, it is 

important to note that physiological biomarkers predict mortality not only in sex-separated, 

but also in mixed groups. In the future, this predictive power might be further elevated by 

leveraging group-stratified data or individualized trajectories, making use of a combination 

of physiological biomarkers that integrate aspects of health, resilience and deterioration 

representative of different organs and systems. At the same time, a more personalized 

approach, based on sex amongst other factors, in determining functional aspects, health 

and well-being, coupled to the design of early and late preventative as well as therapeutic 

measures, seems necessary.

7.1.4 Response criteria: The physiological biomarkers of aging reflect accelerated 

and decelerated aging inasmuch they accurately predict morbidity and mortality. More 

importantly, the interventions aimed at these biomarkers, physical activity and exercise, are 

powerful geroprotectors (37, 38, 264, 925, 1018, 1113).
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7.1.5 Cost considerations: Most molecular biomarkers and clocks rely on invasive 

sample acquisition, specialized equipment, prohibitive costs, and extensive data analysis, 

precluding population-wide application, at least at the moment. In contrast, the measurement 

of most physiological biomarkers is easy and relatively cheap, e.g. to measure step 

count, grip strength, sit-to-stand tasks or gait speed. For others, most expense will arise 

from the initial investments for the acquisition of the corresponding instruments (e.g. gas 

analyzers for the determination of V
.
O2max, and dual energy X-ray absorptiometry (DEXA), 

bioelectrical impedance analysis (BIA), magnetic resonance imaging (MRI) or computed 

tomography (CT) instruments for the determination of (segmental) body composition, 

lean and muscle mass, respectively). Importantly, these instruments can be re-used, even 

re-purposed for additional applications, and require minimal continuing investment. Indeed, 

large-scale, longitudinal imaging programs with MRI, DEXA and carotid ultrasound have 

been successfully initiated with 30’000-100’000 of participants (1114, 1115). The notion 

of cardiorespiratory fitness tests being unduly demanding in resources and costs pales in 

light of the tremendous significance on predicting health and mortality risks, and strongly 

favors a broad and routine implementation of such tests in clinical practice (1116–1118). 

Thus, in general, physiological biomarkers can be cost-effectively collected in large cohorts 

and longitudinal studies. Moreover, some parameters can even be determined with self-

monitoring, e.g. daily steps, gait speed, or sit-to-stand time.

7.1.6 Invasiveness and safety: In general, the physiological biomarkers can be 

measured in a low-risk, non-invasive manner. The determination of cardiorespiratory 

fitness via V
.
O2max is the only biomarkers that necessitates higher intensities and could 

thus be more problematic in some cohorts. Standardized guidelines for the determination 

of cardiorespiratory fitness have been established to implement testing in the clinical 

setting (1119–1123). Adequate safety measures should be considered, e.g. pre-participation 

health screening, and the concomitant acquisition of electrocardiographic data and/or 

blood pressure (1124–1129). Such measurements provide additional clinical insights into 

cardiovascular health and potentially masked hypertension. Notably, V
.
O2max can also be 

estimated in submaximal tests (1125, 1130).

Cautionary findings have also been reported for exercise-based interventions, in particular 

at very high intensities (581, 582, 1131). For example, a U-shaped association between 

exercise intensity and the occurrence of atrial fibrillation has been reported (1132, 1133), 

however diametrically opposed to the clear negative correlation of the risk for atrial 

fibrillation with cardiorespiratory fitness levels (1134, 1135). A potential “exercise toxicity” 

could also be inferred from reversed J-type (or U-shaped) mortality curves in other studies, 

with an increase of the relative risks at very high intensities (1136–1138). Of note, 

the confidence intervals for these specific groups are large, due to the low number of 

participants training at such intensities, and the relative risk still is markedly below that 

of sedentary individuals (1136). Besides atrial fibrillation, excessive endurance training has 

also been linked to a higher occurrence of arterial plaques and myocardial fibrosis (1139), 

even though the association with intensity (1140) or volume (1141) seems complicated 

(1142), and associations are not seen consistently across studies (1143). For example, a 

reduction in plaques was seen in an exclusive female Master endurance athlete cohort 
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(1144). At the moment, it is not clear whether these changes indeed are pathological, 

if they are induced by other factors and risk behaviors (e.g. former smoking habits), or 

represent non-conventional pathophysiology (e.g. calcified vs. non-calcified plaques, and/or 

stabilization of plaques). Indeed, follow-up studies of endurance athletes with increased 

pathophysiological symptoms revealed no increase in all-cause or cardiovascular mortality 

(1139), regardless of coronary artery calcification load (1145) or elevated genetic risk for 

cardiovascular diseases (1146).

In contrast to these cautionary findings, no upper threshold for the mortality benefit of 

cardiorespiratory fitness was found up to very high levels (573, 600, 1147, 1148). In fact, 

structural analysis revealed no cardiac changes beyond the normal range, even in individuals 

with very high engagement in physical activity (1149). Indeed, many studies report “L”-type 

mortality curves, with no added benefit, but also no drawbacks of very high intensity 

exercise (1065, 1150). Thus, at some point, increased training load might have a very 

small additional impact on health parameters (1151, 1152), but, based on most available 

data, should also not confer pathological outcomes on the cohort level (926, 1153, 1154), 

even though individuals with unfavorable genetic predisposition and/or morphological, 

anatomical or functional abnormalities might be at higher risk (1155). As a case in point, 

even athletes with enormous training loads, e.g. participants of Olympic Games, the Tour 

de France, the first sub-4 minutes per mile male runners or other former athletes, have 

better morbidity and mortality scores compared to the general population, or even their 

non-competing siblings (296, 1156–1170). This is irrespective of country of origin, medal 

or type of sport (1171), and to a large extent driven by improved cardiovascular and 

cancer mortality (1157, 1172, 1173). In fact, even epigenetic aging seems decelerated in 

Olympic champions compared to non-champions, with hypo-methylation of genes involves 

in synaptic health, glycosylation, metal ion transfer and force generation, as well as hyper-

methylation of genes associated with cancer promotion (1174). Obviously, none of these 

effects can be completely dissociated from a selection bias based on other health beneficial 

habits that could distinguish this group from their non-elite athlete peers (1175, 1176). 

However, improved survival is also found in non-elite athletes, e.g. in a study of 546’876 

participants of Dutch running, cycling and walking events that has revealed that even in 

the short term (7 days), no increase in mortality odds were observed, while a 30% lower 

risk of death ensued in a 3.3 year follow-up (1177). Benefits most likely persist and could 

confer life-long health advantages, e.g. as reported in the case study of a 77-year-old former 

world-record-holding marathoner (1178). Importantly, low incidence rates of cardiac arrest 

were also reported during long-distance events including half-marathon (0.27 per 100’000 

participants), marathon (1.01 per 100’000) (1179) or triathlon (1.74 per 100’000) (1180). 

Indeed, the estimated rates of sudden cardiac death in athletes that range from 1:40’000 to 

1:300’000 are much lower than those observed in the general population at 1:2’000 (97, 

1181).

In summary, in the absence of adverse pathologies, exercise is an extremely safe 

intervention, with proven benefits, and thus should be broadly recommended (97), even 

in old (1182), frail or otherwise pathological cohorts when certain measures are taken, 

for example people with heart failure (581, 582, 1183, 1184). Thus, appropriate pre-

participation screening, design and monitoring of training programs as well as clinical 

Furrer and Handschin Page 40

Physiol Rev. Author manuscript; available in PMC 2025 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



follow-up of vulnerable populations, including the aforementioned potential cardiovascular 

events associated with high-intensity/volume endurance exercise in veteran athletes, should 

help to prevent and mitigate any adverse outcomes (581, 582, 1185–1192). Thus, for most 

people, the risks and potential adverse effects of physical activity are dwarfed by the benefits 

(1188). Importantly, such benefits can even arise from small efforts (1193–1198) such as 

walking (1199–1202) or non-exercise-related activities in daily life (1203), and can be long-

lasting when following appropriate protocols, e.g. up to 4 years in volunteers of retirement 

age undergoing resistance training (1204). The overall accumulation of time of physical 

activity seems more important than individual bout lengths (1205–1207), at least when 

performed at moderate to vigorous intensity (1208). Notably however, additional effects can 

be achieved by higher engagement, e.g. in structured high-intensity interval training (HIIT) 

compared to moderate intensity continuous training (MICT), or unstructured activity that 

meet the national guidelines (1209).

7.2 Validation of biomarkers of aging

7.2.1 Analytical validation: Most physiological biomarkers are quantifiable and 

easy to measure using well-established methods for data acquisition and interpretation, 

and their assessment is accurate, reliable, repeatable and reproducible, e.g. V
.
O2max, 

muscle mass, strength/power or step count. They circumvent issues of many molecular 

biomarkers in terms of signal-to-noise in the differentiation of positive and negative results. 

Similarly, drawbacks in invasive sample acquisition, preparation, storage, and assay do 

not exist. However, some of the physiological biomarkers can rely on self-reporting and 

questionnaires, for example the amount of leisure-time activity, or individual assessment of 

fatigue and well-being in frailty scores. Importantly, with the increasing use of wearable 

sensors, these drawbacks might be overcome in the future, providing more quantitative, 

accurate and reproducible data on these parameters (296, 1210, 1211). For example, 

physical activity can be precisely measured with accelerometers, and correlation with health 

benefits has been demonstrated (1203, 1212–1214). Machine learning-based methods can 

help in the interpretation, and activity- or risk-recognition can be based on the wearables 

data (1215). In fact, the use of wearables extends to the improvement of adherence 

and compliance to physical activity interventions, with clear, long-term clinical benefits 

(1212, 1216). Bluetooth low energy sensors, or similar techniques, could extend the 

usability to the tracking of indoor location and even social interactions (1217). Obviously, 

issues of validity, reliability, accuracy, reproducibility, standardization, transparency in used 

algorithms, data privacy, usage and ownership will have to be resolved before deployment of 

such instruments (1218). If successful, such applications would further increase the objective 

quantitation of physiological biomarkers (1219–1221).

7.2.2 Clinical validation: In contrast to most molecular biomarkers, physiological 

biomarkers have an extended history of clinical validation regarding morbidity and mortality 

as predictive, prognostic and response biomarkers in various cohorts and populations. 

Moreover, at least some of these parameters help in clinical decision making in different 

patient populations, e.g. in the prediction of postoperative outcomes (983, 997, 1222). In 

fact, clinical exercise testing, in particular cardiorespiratory fitness measurements, have been 

promoted as key tests to stratify patient risk profiles, and encourage healthy lifestyle choices 
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(1121). Moreover, the higher the adoption of standardized tests, e.g. for cardiopulmonary 

exercise testing (1223), the better normative reference values for different ethnicities, sexes, 

age groups, healthy vs. clinical populations, and other demographic parameters will be 

obtained (1224–1232). To achieve such ambitious goals, national and global registries and 

multicenter databases for cardiorespiratory fitness values with sufficient representation of 

various populations, from pediatric to geriatric, have been proposed, including normative 

as well as criterion-based standards (1233, 1234). Similar datasets should be acquired 

for the other physiological biomarkers of health and aging. A number of the proposed 

physiological biomarkers have already been used in longitudinal aging studies such as the 

English Longitudinal Study of Ageing (ELSA), Health and Retirement Study (HRS) or 

Longitudinal Aging Study Amsterdam (LASA). For example, reduced function of lower 

extremities assessed by gait speed and balance is associated with a two to three times higher 

risk of incident dementia over 15 years (975). Furthermore, an improvement in one score in 

the Short Physical Performance Battery (SPPB), evaluating gait speed, balance and repeated 

sit-to-stand, is associated with 8% lower odds of falling over a 14-year period together with 

a lower risk for other mobility impairments (1235). Similarly, one score increase in the 

physical performance test (including a walking, sit-to-stand and balance test) or the gain 

in one kg handgrip strength reduces the 6-years fracture risk in men by ~10% and ~5%, 

respectively (1236).

7.2.3 Translation of biomarkers: For many molecular biomarkers, translation to a 

clinical setting is hampered by several challenges, of which six key barriers have recently 

proposed (135). Here, the current position of the physiological biomarkers is discussed in 

this framework. 1. Data sharing for development and validation. Open and free access to 

publication and data is a problem that is not unique to the field of biomarkers of aging, 

but extends to all of scientific research. It thus is as imperative for the physiological as it 

is for the molecular biomarkers of aging that the FAIR (findable, accessible, interoperable 

and reusable) principles are followed. For some biomarkers, e.g. cardiorespiratory fitness, 

such attempts currently are ongoing (1119). 2. Relative importance of criteria. Even though 

evaluation criteria for biomarkers of aging have been proposed (507), the relative importance 

of these is unclear, and arguments for and against can be formulated. For example, as first 

of the eight criteria discussed (135), the correlation of a biomarker with chronological 

age is important, but, if to rigid, might not be modifiable by geroprotectors or other 

factors that affect age trajectories. Of note, physiological biomarkers exhibit both, change 

with chronological age as well as pliability. Second, strong predictive power of all-cause 

mortality exists, while, at the same time, specific risks for sub- and various clinical 

populations have been found. Third, some of the tests, e.g. gait speed and other frailty 

assessments, predict functional capacity primarily in older individuals. Others however, 

e.g. V
.
O2max, are also applicable and valid in younger subpopulations. Fourth, the risk for 

many age-related diseases can be assessed from physiological biomarkers, and in many 

cases, direct causality proposed, for example linking suboptimal cardiorespiratory fitness 

to cardiovascular pathologies. Fifth, the physiological biomarkers reflect causal aspects 

of aging, represented by the universal decline in muscle, neuronal and bone tissue mass 

and function. Sixth, the response to factors that accelerate aging, or, better, increase the 

risk of morbidities and mortality, is given, at least for those with a clear effect such as a 
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sedentary lifestyle (306). Seventh, inversely, the proven geroprotectors, e.g. physical activity, 

have likewise a positive effect on physiological biomarkers. Finally, the physiological 

biomarkers have been tested and validated in large and diverse populations. 3. Age range for 
application. With the exception of frailty markers mainly relevant in geriatric populations, 

physiological biomarkers can be assessed and longitudinally monitored starting at young 

age, and help to reveal healthy or unhealthy trajectories that are central for the aging 

process. Importantly, the determination of these factors is safe and non-invasive. 4. Minimal 
criteria for clinical use and implementation. As the physiological biomarkers are already 

used in clinical practice, such criteria have been met. 5. Positioning of biomarkers of aging 
in the current disease-specific healthcare setting. Physiological biomarkers are being used 

for patient stratification, treatment monitoring, disease prevention or targeted interventions, 

thus providing clear actionable insights. 6. Connecting biomarkers of aging with actionable 
insights in healthcare and preventative settings. Physiological biomarkers are excellent 

measures for individual health monitoring. However, only some are easily implementable 

on an individual level that does not require access to specialized equipment and facilities. A 

subset such as step counters and other wearables can be, and are, already widely used, with 

meaningful outcomes for health and mortality.

In summary, the physiological biomarkers of aging have already overcome most of the 

challenges that are faced by new molecular biomarkers for clinical translation. Nevertheless, 

further improvements are still desirable, including open science principles, or accessible and 

affordable infrastructure for the longitudinal monitoring of large populations.

8 Challenges and perspectives

The validity of physiological biomarkers to predict morbidity and mortality in the human 

aging process is well-established. Similarly, the effects of exercise as geroprotector, and as 

highly efficacious intervention for the prevention and treatment of many pathologies, most 

of which are chronic and age-associated in nature, are undisputed, as is the acceptance 

of a sedentary lifestyle as strong and independent risk factor for many different diseases 

(264, 303, 306). It therefore is mysterious why this knowledge is not leveraged to a greater 

extent in predicting health, the aging process, morbidity and mortality in pre-clinical and 

human studies. As outlined, the determination of these parameters is non-invasive, non-age 

accelerating, easy, precise and reproducible, in particular with improvements based on 

wearables data. Moreover, even a wide-spread screening of large cohorts is relatively cost-

efficient once initial investments in instruments have been done.

8.1 A potential action plan for health monitoring in from young to old

A comprehensive, longitudinal assessment of health and aging trajectories would optimally 

be done in a systematic, multicomponent manner (Figure 9A).

Currently, such biomarker assessments have to be stratified by the strength of clinical 

evidence. Thus, first and foremost, the physiological biomarkers, as discussed in Section 

6, would provide the basis of screening at the current time. The validity might however 

be further amplified by expanding such screenings with other indices of health and co-

morbidities (1187, 1188), including blood biomarkers for disease risk (1189–1191) and 
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composite markers for different domains, e.g. endocrine and immune function or cognitive 

and physical functional capacity (1192). An integration of the physiological biomarkers with 

the determination of other attributes of functional capacity (1237) (cognition, psychology, 

hearing, vision and vitality/nutrition), e.g. used in the WHO Integrated Care for Older 

People (ICOPE) program to assess intrinsic functional capacity (1238–1240), reproduced 

in the INSPIRE animal cohort, could further boost the predictive power and reflect the 

multidimensional aspects of aging, functional capacity and resilience (980). Similarly, 

additional tests of (micro)vascular health, e.g. assessed non-invasively in the retina, could 

complement V
.
O2max data on cardiovascular health and function (1241), maybe combined with 

other retinal features (1242, 1243). Moreover, wearable-based acquisition of sleep-related 

parameters (342, 1244), and app-based inventory of nutrition (1245) would cover other 

important aspects related to the aging process, even provide compositional insights, e.g. 

on sleep and activity (1246). Improvements in acquisition of such data, in particular in 

regards to nutrition, would have to be made, since self-reporting, as in other areas, is of 

limited reliability (335, 336, 1247). At the moment, disease risk and outbreak is mostly 

monitored with general health screenings, even though the corresponding benefits often 

are questionable (382). Along the same lines, pharmacological interventions such as broad 

administration of polypills, and some wearables data, for example those claiming to predict 

atrial fibrillation (1248) and continuous glucose monitoring in non-diabetic patients (1249, 

1250), will have to be rigorously tested since clinical use of these in healthy individuals and 

in aging is still under debate. Little to no data currently exists for proposed pharmacological 

and interventional “anti-aging” strategies as discussed in Sections 2 and 3, as well as the 

molecular biomarkers of aging. Nevertheless, once positive steps to clinical validation in 

humans have been achieved, these could also be included in a health screening. Finally, 

other molecular, morphological and functional screening tools might be considered and 

tested in the future, e.g. aimed at estimating immune system function, intestinal or other 

microbiomes, or blood and urinary biomarkers (1251).

Optimally, a personalized health pass based on such data would be initiated at young age, 

and updated in a longitudinal manner throughout life (Figure 9B). Thereby, favorable or 

unfavorable trajectories could be identified (573, 1049, 1050, 1252, 1253) and appropriate 

measures initiated in early stages of deterioration. Moreover, the impact of detrimental 

events, e.g. hospitalization, as well as the benefits of interventions could be quantified. 

Finally, personalized diagnosis, e.g. of sarcopenia, could overcome prevailing issues with 

cross-sectional and population data (1254), and might enable early detection and initiation 

of preventative measures on the individual and/or community levels (1255). Thus, a 

better integration of these physiological biomarkers in fundamental aging studies in model 

organisms and humans, population-wide health screening and clinical trials is one challenge 

to overcome, even though hurdles to do so are low (1256).

8.2 How can the adoption of a healthy lifestyle be increased?

A much larger challenge than the implementation of many of these biomarkers and 

screenings is the poor compliance and adherence of many people to life style-based 

interventions despite the obvious health benefits (1257, 1258). In this section, physical 

activity will be used as an example, but analogous conclusions and recommendations could 
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also be made for the better adaptation of other factors discussed in Section 3. Certainly, 

various reasons contribute to differences in active and sedentary behavior, including socio-

economic aspects, availability of time, access to facilities, or fatigue (296). However, to 

a significant extent, human (and murine) activity behavior is controlled by innate, genetic 

factors (1259). Therefore, vague recommendations to increase leisure-time activity, or to 

simply overcome lack of willpower, often fall short, even in patient populations with high 

risks and clear benefit of exercise (1260). In recent years, factors that decisively contribute 

to adherence and compliance have been studied and quantified (1261–1267), helping to 

overcome the intention-behavior gap (1268, 1269). Even the WHO initiated the “Global 

Action Plan on Physical Activity 2018-2030” with the vision of “more active people 

for a healthier world”, aiming for a 15% relative reduction in the global prevalence of 

physical inactivity by 2030 (1270). In many regards, promoting physical activity (and other 

behaviors with health benefits) can be attributed to four levels (1264, 1271–1273): Political 

framework, health care systems, health care professionals and individuals (Figure 10).

1.) Political framework: for example, the reduction of individualized, motorized 

vehicles, which is strongly linked to sedentary behavior and unhealthy lifestyles (1274–

1277), in favor of biking, walking, or public transportation and other infrastructural aspects 

(e.g. central, easily accessible, and attractive staircases instead of elevators and escalators, 

parks and recreational areas, urban/jungle gyms, walking/running tracks) promotes an active 

lifestyle. These efforts also include expanding walking and cycling networks and improving 

pedestrian and cyclist safety (1270).Notably, walkability confers clear benefits on physical 

activity behavior in healthy individuals (1278) and cancer survivors (1279). Additionally, 

fostering an active society can involve offering free activities in parks and public open 

spaces or the temporary/permanent closure of roads to motorized vehicles to facilitate 

activities such as cycling, inline skating, and walking (1270). Other interventions include 

reducing adverse behaviors such as usage of tobacco, alcohol or sugar-sweetened beverages 

and other unhealthy food and drinks through taxation, and the reduction/elimination of 

subsidies for fossil fuels (to curb anthropomorphic climate change and promote more active 

ways of mobility), all of which will liberate funds for the promotion of healthy lifestyles 

(233). The conversion of Paris with the Plan Vélo 2021-2026 shows the feasibility even 

in large metropolitan areas, provided the political will and financial investments. As a 

side-effect, other potentially detrimental factors on healthy aging, e.g. air pollution, noise 

emissions or insufficient sun exposure, would also be mitigated by such infrastructural 

changes. Importantly, research and surveillance of healthy lifestyle habits and interventions 

should be promoted, as should public awareness.

2.) Health care systems: a shift of the emphasis from treatment, care and rehabilitation 

to prevention (primary and secondary) should be promoted (Figure 11).

Financial relief, e.g. on health care costs, certainly belong to the strongest incentives. 

Moreover, the establishment of science-based, individualized, structured and guided exercise 

programs, including aspects of behavior change and habit formation, would ensure the 

highest adherence and compliance (1261, 1262, 1268, 1280, 1281). This could be facilitated 

if general practitioners were able to issue physical activity or lifestyle prescriptions for 
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inactive individuals, covered by the health insurance. In most countries, this is usually 

only possible for individuals with existing physical impairments, thus in rehabilitation or 

secondary prevention, rather than for primary prevention in those who are still healthy but 

inactive. The prevailing reactive health care system, focused on treatment and rehabilitation, 

leads to high costs, and patient relapse (Figure 11A). Programs for secondary prevention 

that go beyond rehabilitation often do not exist, but would help to minimize relapse by 

aiming at achieving functional capacity levels that surpass those that initially contributed to 

an incident or disease in these patients (Figure 11B). Optimally, proactive programs would 

be established for the primary prevention in healthy individuals to reach a level of functional 

capacity and resilience that minimize such incidents before they even occur (Figure 11C).

3.) Health care professionals: it is clear that a general recommendation of “being 

more active and eat a balanced diet” are insufficient (1282). Therefore, personalized physical 

activity or lifestyle counselling should be accessible for individuals with an unhealthy 

lifestyle, tailored for different populations such a geriatric individuals (1283, 1284). The 

recognition of the importance of physical activity is very divergent amongst health care 

professionals. For example, there is a large variation in exercise prescription by physicians 

depending on their own physical activity level (1282). In fact, physically active physicians 

provide almost twice as many daily physical activity consultations compared to their inactive 

colleagues. One of the major barriers for primary care physicians to prescribe physical 

activity to patients include a lack of education. Accordingly, medical curricula should much 

more strongly emphasize the importance of physical activity, which in many diseases is 

on par with pharmacological and other interventions (303). This should help health care 

professionals to incorporate routine fitness testing and exercise interventions in the clinic, 

and guide patients towards structured programs (1285).

4.) Individuals: the education about the strong benefits of an active lifestyle has to be 

massively expanded, starting at young age, notably in an accessible and understandable 

manner to minimize misunderstanding and misinformation (1286). Often, such aspects are 

the first to be removed from already overloaded school curricula. Moreover, extracurricular 

activities, such as walk- or cycle-to-school programs, should also be strengthened, including 

the integration of road safety education (1270). Second, social safety nets, which reduce 

the work time of socio-economically disadvantaged cohorts, would lessen time pressure 

and fatigue, and increase motivation to engage in exercise (1287, 1288). The goal of 

the educational measures on different levels should be clear guidance for the design and 

application of personalized, evidence-based, safe and efficacious training paradigms (1289, 

1290), nutrition (1291), and other interventions.

8.3 Who is going to pay for this?

Obviously, any of these measures are associated with considerable financial investments, at 

least in the short-term, which might dampen the enthusiasm for such political and societal 

initiatives, e.g. in politicians who think in 2, 4, or 6 years election cycles. It however 

is important to point out that in the long run, better public health will yield enormous 

savings, even in the context of an aging population (233). For example, various studies 

estimate an average saving of USD 3 to 4 for each dollar invested in measures that promote 

Furrer and Handschin Page 46

Physiol Rev. Author manuscript; available in PMC 2025 July 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



physical activity alone (1292, 1293). Each increase in one metabolic equivalent (MET) 

in cardiorespiratory function leads to an individual annual reduction in health care costs 

between USD 1025 and 5193 in different populations (thus approx. 5-10% of total costs) 

(1294, 1295), a decrease in all-cause sickness absence days (1296), improved work ability, 

and less doctor and hospital visits (1118). Further return of investment can be expected 

from other changes, e.g. healthy diet (1297), for example by lowering the annual costs of 

GBP 2.68 billion caused by unhealthy food in the UK (1298), cycling infrastructure (1299), 

or adequate sleep (1300). In Canada, the economic burden of low cardiorespiratory fitness 

is estimated at CAD 3.6 billion, with savings of CAD 644 million per year with a 10% 

reduction in the prevalence of low cardiorespiratory fitness (1301), and similar numbers for 

low muscle strength (CAD 3 billion total costs and CAD 546 million savings with 10% 

improvement) (1302). Along these lines, a reduction in the incidents of fatal and non-fatal 

falls would save costs in the millions, if not billions of USD even only within the United 

States (1303). Finally, risk factors such as elevated BMI or waist circumference significantly 

drive health care costs, for example, by 15.4% more with an increase in waist circumference 

by 10 cm (1304). Thus, while finding a true “anti-aging” drug or intervention could mean a 

lot of money to be gained (for a handful of individuals or companies), engaging in proven 

lifestyle- and behavior-associated interventions with certainty leads to a lot of money saved 

(for a society).

8.4 Conclusion and outlook

All of these arguments should not be taken as a vote against current research into 

molecular clocks, epigenetic reprogramming and rejuvenation, and other cutting-edge 

topics in aging research. Hopefully, future insights in these fields will synergize with 

those obtained in research areas focused on the basic biology of the physiological 

biomarkers, and together, provide mechanistic and causal data on healthy and unhealthy 

aging. Moreover, potential age-reversal-age-extension (ARAE) paradoxical effects between 

pharmacological geroprotectors and lifestyle interventions, e.g. the attenuating effect of 

metformin, resveratrol or rapamycin on training adaptation (37, 38, 476, 1305), could be 

overcome with a better understanding of the respective systems. Importantly, assessment 

and leverage of the physiological biomarkers (1306), the knowledge of proven drivers of 

unhealthy aging and of interventions promoting healthy aging are available now, and could 

(should!) be applied immediately in an effort that would benefit all to attain a healthier, 

longer and happier life (1307) (“a high tide lifts all boats”), instead of waiting for potential 

future breakthroughs, many of which might only be accessible to a handful of millionaires. 

Indeed, a three-round Delphi study recently came to the overwhelming conclusion that 

the physiological biomarkers are currently by far the best tools to monitor and assess 

interventional studies aimed at aging and longevity (1308). Until other biomarkers and 

interventions, e.g. those based on molecular criteria, reach the same level of maturity, it 

thus is important that, despite the heightened interest and the massive influx of money for 

basic research, biotechnological and clinical application, with the hope of immense return of 

investment (1309), hype of premature, preliminary and not yet reproduced results should be 

avoided to temper inflated expectations in scientists, funders, the media and the lay public 

alike (1310).
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Clinical Highlights

1. Aging is the strongest risk factor for many (chronic) diseases, frailty, 

morbidity and mortality.

2. At the moment, the molecular underpinnings of aging are still only poorly 

understood and accordingly, pharmacological interventions that directly target 

aging elusive.

3. The molecular biomarkers of aging exhibit a large variability, with very few 

attempts of validation in humans.

4. Physiological biomarkers of aging, centered on functional, anthropogenic and 

morphological aspects, are well-established in large human populations, with 

very high predictive value for disease risks, frailty, morbidity and mortality.

5. The physiological biomarkers however are somewhat underappreciated, even 

though they could be used in young and old, healthy and clinical populations 

right now.

6. Lifestyle, behavioral and environmental factors have a significant effect on 

human health and mortality, while many pharmacological and interventional 

approaches found in pre-clinical models still await human translation.

7. These factors with proven benefits should be encouraged and promoted on the 

individual and societal levels.
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Box 1

Proposed framework and criteria of aging biomarkers. Adapted from ref. 
507

Classification How can the biomarker be used?

1.)Predictive (e.g. for aging trajectories, identification of individuals that respond to 
interventions)

2.)Prognostic (e.g. trajectories and treatment of age-associated diseases)

3.)Response (e.g. biological reaction to aging or interventions)

4.)Surrogate endpoint (e.g. to substitute for direct measurement of aging)

Assessment How can the biomarker be measured?

1.)Feasibility and validity of measurements (e.g. prerequisites for sample 
acquisition, processing and data interpretation, age-sensitivity, non-age-
accelerating)

2.)Mechanistic underpinnings and biological plausibility (e.g. reflection of 
underlying mechanisms involved in the aging process)

3.)Generalizability (e.g. narrow vs. broad applicability from model organisms to 
humans, usage in different ethnicities, sexes, age groups and other demographics 
and populations)

4.)Response to aging and interventions (e.g. reflecting improvement or 
deterioration in the aging process and inversely, promotion of geroprotective 
effects)

5.)Costs (e.g. application in large-scale settings and life-long longitudinal 
assessments)

6.)Invasiveness and safety (e.g. minimally invasive, devoid of adverse effects, safe 
to test from the young to the oldest of the old)

Validation Has the biomarker been validated in terms of measurement methods and clinical 
application?

1.)Analytical validation (e.g. quantifiable, accurate, reliable, repeatable and 
reproducible measurement, standardized procedures)

2.)Clinical validation (e.g. validity in different human cohorts, statistically relevant 
reference values for broad demographics and populations)
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Figure 1. The molecular and cellular hallmarks of the aging process and potential anti-aging 
compounds.
A number of molecular cellular alterations have been proposed to be associated with the 

aging processes, including genomic instability, telomere attrition, epigenetic alterations, 

loss of proteostasis, compromised autophagy, deregulated nutrient-sensing, mitochondrial 

dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, 

chronic inflammation, and dysbiosis (see ref. 110). Various treatments have been suggested 

to target some of these processes (examples shown) and might thereby have the potential 

for anti-aging drug effects (see refs. 38, 110, 113–128). However, at the moment, no 
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evidence for efficacy (and safety) for the application of any of these pharmacological 

and interventional factors on the human aging process exists. Figure created with 

BioRender.com.
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Figure 2. Factors and interventions affecting healthy aging, health- and lifespan, morbidity and 
mortality.
Nature: The genetic endowment and the benevolent outcome of random events cannot be 

influenced. Nurture: Lifestyle-associated behaviors can, to a large extent, be influenced 

on an individual level, extending to the modulation of some epigenetic modifications. 

Environment: Other significant factors, e.g. socio-economic status, health care and 

education, are determined by the prevailing political and societal landscape. For all of 

these factors, solid epidemiological and/or observational data for a significant influence 

on morbidity and mortality in humans exist. Yet to be identified “anti-aging” drugs with 

validated efficacy in humans could add to or synergize with the effect of these factors. 

Inversely however, they could also interfere, both on a psychological level, e.g. intake of a 

pill replacing exercise as an easier “substitute”, or on a mechanistic level, e.g. as described 

for resveratrol, metformin or rapamycin. Thus, at the moment, efforts should center on 

improving the adoption and promotion of the proven factors shown here. Figure created with 

BioRender.com.
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Figure 3. Molecular biomarkers and aging clocks.
The age-dependency of several molecular events is leveraged to predict whether “biological 

age” deviates from chronological age. Processes that are monitored range from telomere 

length to epigenetic marks, most notably DNA methylation events. Specific fingerprints 

of transcripts, proteins, metabolites and protein glycosylations and glycation have likewise 

been proposed as biomarkers for aging. Most of these age-dependent molecular changes 

occur in all cells, tissues and organs of the body. However, significant differences exist 

between individual tissues/organs, cell types, or even between cells of the same type based 

on spatial organization within an organ. One way to avoid potential confounding effects 

of cell heterogeneity is to define plasma metabolite or plasma protein profiles that are 

associated with aging. Of note, some of these clocks are affected by circadian rhythms or 

external perturbations such as pregnancy, infection, diseases and potentially other factors 

such as chronic stress. Abbreviation: AGE, advanced glycation end product. Figure created 

with BioRender.com.
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Figure 4. Physiological/functional hallmarks of aging.
The loss in muscle mass, often associated with a change in fat mass and distribution, 

reduced cardiorespiratory function, impaired muscle strength/power and neuromuscular 

deficiencies associated with frailty are age-related processes that are observed universally, 

all of which are measured with the physiological biomarkers of aging. In addition, 

reduced brain health, in particular driven by neurodegeneration, and a loss in bone mass 

and mineral density occur. Most of these hallmarks of aging can be determined by the 

proposed physiological biomarkers. Of note, all of these hallmarks of aging are ameliorated 

by the lifestyle- and behavior-based interventions, most importantly exercise training. 
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Abbreviation: CT, computed tomography; DEXA, dual energy X-ray absorptiometry; MRI, 

magnetic resonance imaging. Figure created with BioRender.com.
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Figure 5. V
.
O2max is a strong predictor of health, morbidity and mortality.

A, V
.
O2max represents a multisystem readout of cardiorespiratory fitness, which is highly 

pliable by exercise. The age-associated decrease of up to 10% per decade can meet 

an aerobic frailty threshold, leading to disability and loss-of-independence. V
.
O2max is 

substantially higher in elite athletes, with measures approx. 2-fold above those of the 

general population. B, Age-related V
.
O2max in a cross-sectional patient study of different 

ages and sexes (n=122’007; men: n=72’173; women: n=49’904), acquired over 24 years, 

tested by treadmill running. The 25th, 50th and 75th percentiles for each sex are indicated 
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by solid (50th) and dashed (25th and 75th) lines. Adjusted all-cause mortality hazard risk 

ratios between groups (pooled over all age groups and both sexes) are all significant 

(p<0.001). Groups: Low (<25th), below average (25th-49th), above average (50th-74th), high 

(75th-97.6th), exceptional (>97.7th). Values from ref. 600. C, Examples of organs, tissues and 

cell types that contribute to and determine V
.
O2max. Figure created with BioRender.com.
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Figure 6. Physiological biomarker grip strength.
Age trajectories of grip strength in men and women. Grip strength data from ref. 785 

(n=49’964 participants; men: n=23’277; women: n=26’687). Adjusted hazard risk ratios 

from refs. 792 and 789. Figure created with BioRender.com.
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Figure 7. Age-associated degeneration of skeletal muscle, neuronal tissue, bone and the 
cardiovascular system drive a vicious cycle leading to loss-of-independence, morbidity and 
mortality.
Sarcopenia (loss of muscle mass and function), together with reduced cardiovascular and 

– respiratory function (leading to decreased endurance and increased fatigability) reduce 

physical performance and increase the perception of effort for exercise- and daily task-

related endeavors. As a consequence, such activities are being increasingly avoided, further 

depleting functional capacity and reserves. The lack of adequate levels of these lead to 

frailty, which, in turn exacerbates sarcopenia, cardiovascular dysfunction, neurodegeneration 
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and osteoporosis, thereby fueling a vicious cycle. Together with neurodegenerative events, 

e.g. linked to dementia, this constitute the major driver for the inability to perform daily 

tasks (e.g. carrying groceries, cleaning the apartment, walking up- and downstairs or across 

pedestrian crossings), enjoy social interactions, and independent living, thus leading to 

admission to nursing homes, increasing the risk for (co-)morbidities and elevating mortality 

risks. Neuromuscular deterioration, e.g. in balance, motor coordination and gait, promotes 

insecurity and, exacerbated by muscle weakness, also the risk for incident falls, which, in 

the worst case, lead to fractures (facilitated by reduced bone mass and mineral density), 

immobilization and hospitalization. All of these factors contribute to the avoidance of 

physical activity and exercise, thus further fueling this vicious cycle. Figure created with 

BioRender.com.
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Figure 8. Physiological aging biomarkers associate with chronological age, while also predicting 
“biological age”.
In this figure, the decline of gait speed with chronological age in men and women is shown 

from which a “biological age” can be inferred. In the examples, the green star represents an 

individual of chronological age 80, who however has a gait speed representing the mean of 

70 years of age. In contrast, the slow gait speed of the 70-years old red star is equivalent 

to that of 80-years old individuals. In these examples, the 80-years old would still sequester 

above the threshold of 1.2 m/s gait speed needed to walk across many pedestrian crossings 

(indicated by the yellow line) (see ref. 1311), while the 70-years old individuals would fail 

to succeed in this task. The figure is based on data presented in ref. 1312 (men: n=2’087; 

women: n=2’569). Figure created with BioRender.com.
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Figure 9. Comprehensive assessment of physiological and other biomarkers of aging.
A, Gait speed, grip strength, leisure time activity, V

.
O2max, relative muscle mass and related 

parameters are clinically proven biomarkers of aging. A longitudinal assessment throughout 

lifetime could provide information on aging and health trajectories, efficacy of interventions 

and treatment, and detrimental outcome of pathological events. Data on sleep and nutrition, 

wearable- and/or app-based, could likewise be included. Moreover, specific assessment of 

vascular function (and “vascular age”), based on blood flow, stiffness and dilation dynamics, 

assessed in a non-invasive manner, for example in the retinal vasculature, helps to predict 
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vascular health. Such an individual “health/aging” pass, consisting of a combination of 

these markers, could further be combined with general health screening, pharmacological 

preventative interventions (e.g. a polypill) or wearables data, even though the benefits of 

these measures are currently questionable. In the future, molecular biomarkers of aging, 

as well as potential pharmacological and interventional means could be included in such 

a strategy, if valid clinical data on efficacy and safety in the human aging process can 

be shown. B, A personalized health pass covering various domains should be based on 

the proposed biomarkers and obtained in a longitudinal manner from young to old age. 

Thereby, favorable or unfavorable trajectories could be identified early on, and appropriate 

measures prescribed. Abbreviations: BIA, bioelectric impedance analysis; CT, computed 

tomography; DEXA, dual-energy X-ray absorptiometry; MRI, magnetic resonance imaging. 

Figure created with BioRender.com.
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Figure 10. A four-level approach to promote physical activity.
Physical activity, exercise training and calorically-controlled, balanced diet have proven 

benefits on the aging process, morbidity and mortality. These lifestyle-based behaviors 

should therefore be promoted on different levels, from a political framework that supports 

the corresponding infrastructural adaptations, to health care system investing in prevention, 

health care professionals monitoring and prescribing guided, structured programs, and 

eventually the individual who will have to initiate and maintain behavioral changes 

for long-lasting effects. Various examples of measures are shown. Figure created with 

BioRender.com and Adobe Stock Photos.
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Figure 11. Focus on prevention rather than treatment.
A, Impaired functional capacity is a major driving force for incident morbidity, accidents or 

wear and tear, potentially leading to dependence on medical intervention and hospitalization 

and the corresponding debilitation. The prevailing model of a reactive, therapy-focused 

system with high costs, and high relapse if rehabilitation is aimed at bringing back patients 

to the initial baseline of functional capacity, which, often remains in a suboptimal range, 

thus potentially setting up patients for relapses. B, Additional programs that boost functional 

capacity to an optimal level, e.g. with health coaching and guided, structured training 

programs, could help in a more pro-active manner in secondary prevention. Thereby, a more 

optimal state of functional capacity could be achieved, preventing or at least mitigating 

the risk for relapses. C, In the best case scenario, programs aimed at health individuals in 

primary prevention would improve functional capacity to an optimal range before the onset 

of an incidence, thereby conferring resilience to avoid or reduce pathological events and 

health care system dependence. Figure created with BioRender.com.
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