

Published in final edited form as:

Physiol Rev. 2025 July 01; 105(3): 1609–1694. doi:10.1152/physrev.00045.2024.

Biomarkers of aging: from molecules and surrogates to physiology and function

Regula Furrer¹, Christoph Handschin^{1, #}

¹Biozentrum, University of Basel, Basel, Switzerland.

Abstract

Many countries face an unprecedented challenge in aging demographics. This has led to an exponential growth in research of aging, which, coupled to a massive financial influx of funding in the private and public sectors, has resulted in seminal insights into the underpinnings of this biological process. However, critical validation in humans have been hampered by the limited translatability of results obtained in model organisms, additionally confined by the need for extremely time-consuming clinical studies in the ostensible absence of robust biomarkers that would allow monitoring in shorter time frames. In the future, molecular parameters might hold great promise in this regard. In contrast, biomarkers centered on function, resilience and frailty are available at the present time, with proven predictive value for morbidity and mortality. In this review, the current knowledge of molecular and physiological aspects of human aging, potential anti-aging strategies, and the basis, evidence, and potential application of physiological biomarkers in human aging are discussed.

Abstract

[#]Correspondence to: christoph.handschin@unibas.ch.

Conflict of interest: C.H. is an associate editor of *Physiological Reviews* and was not involved in and did not have access to information regarding the peer-review process or final disposition of this article. An alternate editor oversaw the peer-review and decision-making process for this article. None of the authors has any other conflicts of interest, financial or otherwise, to disclose. The authors have no other conflict of interest related to this manuscript.

Telomere length
 Epigenetic modifications
 Transcriptome
 Proteome
 Glycoproteome
 Metabolome

Cardiorespiratory fitness ($\dot{V}O_{2\max}$)
 Muscle mass / Fat distribution
 Muscle strength & power
 Leisure-time activity
 Functional frailty parameters

Graphical abstract.

Keywords

Aging; biomarkers; exercise; healthspan; longevity; $\dot{V}O_{2\max}$; grip strength; gait speed; muscle mass

1 Introduction and background

The process of biological aging has preoccupied humans throughout history, exemplified by religious lore, myths and stories about achieving long, healthy lives, even immortality, in almost every culture world-wide, with the Mesopotamian Epic of Gilgamesh as one of the earliest recorded examples, possibly dating back to 2100 BCE, in which the secret for everlasting life is desperately, and unsuccessfully, sought after (1). In comparison to prehistoric humans living as hunter-gatherers (2), human life expectancy has tremendously increased, in particular in the last 200 years, driven by various factors, including industrialization and the related abundance of food, processes that improved food preparation and preservation (e.g. those developed by Louis Pasteur), sanitation and hygiene in the public sector (e.g. drinking water treatment, sewage collection and purification) and clinical settings (e.g. hygiene promoted by Ignaz Semmelweis), as well as progress in the prevention (e.g. development of vaccines by Edward Jenner) and treatment (e.g. discovery of penicillin by Alexander Flemming) of infectious diseases or other pathologies (e.g. insulin by Frederick Banting, Charles Best and John Macleod, general anesthesia by

William Morton, or statins by Akira Endo). In addition, other factors, such as social changes including universal public health care, better education and awareness, or advances in the prevention and treatment of other diseases have also contributed to the almost unabated rise in average life expectancy, at least until recent years (3). Intriguingly, this increase has initially been driven by reduced mortality at a young age, which later extended to improvements in middle and old age, thereby elevating median life expectancy, while maximal life span remained largely unaffected (4–6). Indeed, arguments for and against a limit of human lifespan have been put forward (4, 7–13), and various morphological and functional data indicate that humans might already be a long-lived species (e.g. based on resting heart rate (14), body mass (15, 16), metabolic rate (17), time of development of sexual maturity (17, 18), brain mass (17), DNA methylation rate (19) or epigenetic signature (20)), arguing for a possible lifespan maximum and restricted window to push these limits in the absence of decisive new scientific, clinical, technological, social/societal or ecological/environmental advances and breakthroughs (21, 22). In line, the current “world record” of an age of 122 years and 164 days set by Jeanne Calment has not been broken (or even approximated) since her death in 1997 (23). In fact, at the moment, the difference between her age and that of the second oldest person, Kane Tanaka (119 years and 107 days, death in 2022) is with 3 years and 57 days larger than the difference between places 2 to 10 (Chiyo Miyako, 117 years and 81 days, death in 2018) of 2 years and 26 days.

Intriguingly, in the longest living countries, the rise in life expectancy has been slowing down since the 1990s (24). Moreover, even though higher intrinsic capacity related to cognitive, locomotor, psychosocial and sensory function have been measured in individuals of a certain age compared to their counterparts of earlier generations (25, 26), there is also evidence of an increasing gap between life- and healthspan (the number of years spent in good health), indicating that gains in life expectancy might not be matched with corresponding improvements in healthy aging (27). Indeed, it is indisputable that for many diseases, most of which are chronic in nature, age is by far the largest and most common risk factor (28). On a societal level, a strong demographic trend towards an aging population is observed in a number of countries (6), e.g. forecasted to triple the number of those 85 years of age or older in the United States from 2022 to 2050 (29). This trend now extends beyond high-income countries: world-wide, the proportion of individuals aged 65 or higher progressed from 5% in 1950 to 9% in 2020, and is expected to continue to rise to 16% by 2050 (30). This aging segment is now the fastest growing, by 2019, for the first time in human history, having outnumbered that of children younger than 5 years of age (31), reaching 2.1 billion individuals aged 60 and over by 2050 (32). Similarly, the population of 80+ years old will expand to 426 million in the next 25 years, approximately triple that of 2020 (32). Overall, the challenges emerging from this aging trend might surpass those of overall population growth, which has declined in recent decades and is projected to continue to slow (33). Therefore, the urge to understand the aging process, and, in the optimal case, prolong human life, or at least healthspan, is understandable in light of the functional decline, disease risk, and inevitable death faced at old age, and the societal challenges that arise from the changing demographics. To do so, first, aging *per se*, disentangled from age-associated diseases, has to be investigated (34) since at the moment, our understanding of the fundamental mechanisms driving aging is poor. For example, the

concept of chronological and “biological” age as potentially diverging entities describing separate aging trajectories is still nebulous and ill-defined (35–39). In fact, no consensus on the principles and processes of aging has been reached at the moment (40). Second, the definition of “healthspan”, or even “health” in general should be sharpened to provide the framework for measuring and improving this important parameter (41). Good arguments exist to extend “health” and “healthspan” beyond the mere absence of disease and infirmity, and, as suggested by the World Health Organization (WHO), include physical, mental and social well-being (42). Such insights and advanced could help to bring the “Decade of Healthy Aging”, declared for 2021–2030 by the United Nations (UN) General Assembly (43) based on an initiative of the WHO in 2020 (44), to a successful conclusion.

1.1 Aging: a biological/physiological program, stochastic deterioration, or a disease?

In contrast to post-natal development and puberty culminating in adulthood, generally recognized as genetically encoded and evolutionary selected biological programs, the underpinnings of aging, in particular after reproductive age, are highly debated (45). Evolution results in the retention of favorable genetic traits in a given environment, which are only stable if passed on to the progeny. Human aging beyond reproductive age (after the menopause in women) thus could be a.) evolutionary neutral, resulting in random deterioration and accumulation of damage, b.) under evolutionary pressure for an accelerated process, for example to remove non-reproducing individuals from the competition for scarce resources, or c.) inversely, favor a decelerated program, allowing post-reproductive individuals to care for the particularly dependent human infants, permitting adult humans to commit more time for resource provisioning by hunting and gathering (“Grandmother hypothesis”) (46, 47). Survival after menopause is rare in the animal kingdom, so far described in the wild in elephants (48), toothed whales (49) and chimpanzees (50), but might be more common mammals in captivity (51). Of note, a significant post-reproductive lifespan is also observed in pre-industrial humans, in absolute and/or relative length surpassing that of most animals, including non-human primates (48, 51, 52). Hence, unlike most species, humans substantially exceed reproductive age and exhibit remarkable longevity.

1.1.1 Insights into the aging process from long- or short-lived humans:

Unraveling the underpinnings of human aging is not easy: for example, the study of (super)centenarians is marred by the tiny sample size (53). The prevalence of centenarians is estimated at about 1 per 2'200 (of which 85% are women and 15% men), and that of supercentenarians at about 1 per 1 million individuals (of which 90% are women and 10% are men) (54). Genetic studies of long-lived individuals has led to the discovery of more than 50 genetic loci, albeit with small effect size (55). Most of these are linked to (cardio-metabolic) disease risk, e.g. apolipoprotein E (ApoE) (55), with the potential exception of the transcription factor forkhead box O3 (FoxO3), for which the underpinnings of the impact on human aging and longevity remains to be elucidated (56). Intriguingly, centenarians, despite exhibiting a longer lifespan, have lower disease rates throughout life and thus uncouple the association of old age from the normal occurrence of major age-related diseases seen in the normal population (57). Overall, “escapers” with no clinically demonstrable disease at the age of 100 (about 15%), “delayers” having no

age-related disease until the age of 80 years or later (about 43%), and “survivors” who experienced pathologies before the age of 80 years (about 42%) have been described (54). Next, so-called “Blue Zones” have been proposed as confined geographical regions with an apparent significant accumulation of healthy individuals at old age (58, 59). At the moment, no identifiable genetic signature has emerged from the study of these regions beyond potentially disease-relevant genes (analogous to those found in (super)centenarians), primarily investigated in the population of Sardinia (60, 61). Instead, the healthy longevity has mostly been attributed to lifestyle factors, including low smoking prevalence, ample physical activity, favorable nutrition, or strong social contracts (62, 63). While these factors are generally applicable and accepted (see section 3 below), others are more puzzling and contrary to broader associations, for example the fact that at least some of these “Blue Zones” are economically disadvantaged. Moreover, in some of these regions, e.g. Okinawa in Japan or Nicoya in Costa Rica, the proposed advantages seem only valid for certain populations, and are vanishing in the present time (64, 65). Whether these developments are caused by a changing environment, for example in dietary habits in Okinawa (66), or if these are based on incorrect classification is currently debated (63, 67, 68). Importantly, the overall concept of such “Blue Zones” has been questioned due to poor record keeping (68, 69) and/or other causes of over-inflated records of (healthy) longevity, including claims related to pension fraud (70, 71). It thus is unclear whether “Blue Zones” will decisively help in our understanding of aging (72). Finally, so-called “premature aging” diseases, e.g. progeria, are caused by monogenic mutations in genes of DNA repair, genomic maintenance, fidelity of DNA replication and/or nuclear architecture, thus poorly representing the complexity and multifactorial aspects of *bona fide* physiological aging (73). In fact, the overall contribution of gene variants to aging is unclear: estimates for life span heritability range from 15-30% (74), while results from twin studies imply an even more moderate contribution (75), possibly below 10% (76). Similar to the findings in centenarians, exceptional parental longevity has been associated with reduced cardiovascular disease risk in the offspring (77). Interestingly, in such rare cases of favorable genetic endowment, benefits on health and survival are observed even with suboptimal lifestyle, socioeconomic status or nutrition (77, 78). Heterogeneity in familial longevity however implies additional factors to modulate the contribution of genetic factors in heritability (79). Overall, a genetic contribution to aging, in particular to exceptional lifespans, seems highly probable, but this most likely is based on multigenetic effects with individually very small effect sizes. Nevertheless, a healthy lifestyle and other factors, discussed below), can override an unfavorable genetic endowment to a significant extent.

1.1.2 The use of model organisms to understand the aging process:

Investigating the aging process in humans is challenging due to reasons outlined in the previous paragraph and the fact that longitudinal aging studies would require decades. Consequently, human data are often based on cross-sectional associations, and molecular mechanisms of aging have primarily been studied in model organisms, with much fewer data in humans. While lower organisms are extremely valuable for mechanistic and causality investigations, translatability of aging insights to humans might be hampered for several reasons. First, as outlined above, human aging is characterized by a long post-reproductive period and humans are potentially already reaching upper limits of longevity. Second, the

most commonly used model organisms in the aging field show pivotal biological differences compared to humans (80–84). For example, in *Saccharomyces cerevisiae* (baker's yeast), replicative aging and chronological lifespan describe different processes for which direct human equivalents are missing. The same is true for spore formation under starvation conditions in yeast. Similarly, *Caenorhabditis elegans* (roundworm) can either be males or hermaphrodites, will enter a Dauer stage in starvation, are prototypical post-mitotic organism in regards to the somatic cells in the adult stage (85), and initiate a self-destructive reproductive program in which somatic biomass is used at the expense of yolk production, leading to reproductive death (86). *Drosophila melanogaster* (fruitfly) exhibit a marked fecundity – longevity trade-off, and can enter a reproductive diapause, for example when exposed to low temperatures. Starvation leads to a torpor state in *Mus musculus* (mouse), characterized by significantly reduced metabolic rates. In contrast, under non-starvation conditions, the metabolic rate, which is closely related to body size, is substantially higher in mice than in humans (approximately 7 times higher when comparing a 30-g mouse to a 70-kg human) (87). Similarly, heart rate is considerable higher in mice with ~600 beats/min, which is nearly ten times that of humans (87).. Furthermore, mice exhibit a ~30-50 times faster genomic response in different inflammatory conditions (88). Moreover, mice and *Rattus norvegicus* (rat) have up to 10 times longer telomeres compared to humans (89). In addition, kinetics of other processes such as RNA and protein turnover are higher than the human counterparts, with protein turnover being ~10 times faster (88). Finally, all of these model organisms have a profoundly shorter lifespan than humans, from about 14 days (chronological) in yeast, ~3 weeks in *C. elegans*, ~2-3 months in *D. melanogaster*, ~2-3 years in *M. musculus* to ~3-4 years in *R. norvegicus*. As such, one human year is approximately the equivalent of 13.7 rat days (88). The most commonly used non-human primate model, *Macaca mulatta* (rhesus monkey) reaches about 27 to maximally 40 years, thus only up to half of *Homo sapiens* (human) average lifespan. Mechanisms, interventions and pharmacological treatments that emerge from the study of these canonical model organisms might therefore not be directly extrapolatable to humans, or not feasible due to concerns of tolerability, safety and adverse effects, the development of tolerance, evasion, feedback mechanisms, compensation or decompensation in the much longer timescale of application in humans. Better results might emerge from the study of other long-lived species, many of which however are not amenable for large-scale, controlled and standardized investigations (90–93).

Besides these physiological differences, laboratory conditions might also introduce artefacts and differences when compared to the environment and lifestyle of humans “in the wild”. Most canonical model organisms are bred, kept and experimented on under strictly standardized conditions (94). For example, rodents are often housed in pathogen-reduced (or “free”) conditions, humidity and temperature are rigorously controlled, often not at thermoneutrality (95) below which a substantial fraction of energy intake is used to maintain body temperature (96). The circadian light-dark cycle is fixed, without seasonal variation. The animals are severely sedentary, receive *ad libitum* diets, and undergo health monitoring, which leads to sick animals being removed from experiments cohorts for ethical reasons, e.g. due to infections or cancer (80–82, 84, 90, 97). Such environmental differences might be of uttermost importance, e.g. when trying to translate findings such as the lifespan

extension in mice with interleukin 11 (IL-11) inhibition (98), which might become an issue in humans that need a fully functional immune system, in addition to the other roles of this cytokine in various tissues (99, 100). Such functions might extend to other contexts, for example the effects elicited by exercise on immune cells and function that contribute significantly to training adaptation, reduction in musculoskeletal diseases and healthy aging (101). Environmental differences might also mask constraints of genetic effects. For example, mutations of the Methuselah gene (or antagonism of the corresponding protein) in *D. melanogaster* increases lifespan, but only in very specific conditions such as sex, food source, mating status and temperature (102). Thus, the apparent longevity is not paralleled by an increase in healthy aging, and achieved at the expense of general fitness, e.g. increased susceptibility to cold, a reduction in reproductive output, and dysfunction of the neuromuscular junction (102).

Despite these caveats, model organisms have yielded insights into mechanistic aspects of aging, and, as opposed to human studies, allow the acquisition of data beyond correlative or associative value. Moreover, in many regards, parallels between the physiology of model organisms and humans exist. Thus, investigations in model organisms are important, and should complement human studies. Moreover, evolutionarily conserved mechanisms allude to fundamental, important molecular principles. Nevertheless, a careful validation in humans is indispensable to avoid unwarranted extrapolation. For example, generally speaking, the reduction of processes involved in growth, anabolism, and sexual reproduction and fecundity, and the increase in maintenance and repair pathways emerged as main targets to increase longevity in various model organisms (103). For example, mice with mutations in the pituitary – growth hormone axis such as Ames or Snell Dwarf mice exhibit an up to 40% increased mean and maximal lifespan, together with a delayed age-related decline in T cell function, improved collagen cross-linking and reduced joint cartilage degeneration as well as osteoarthritis, better cognitive function, and lower incidence and severity of neoplasms (104). However, these benefits only manifest when housed together with wildtype females since mutated males are killed by wildtype males. Moreover, co-housing is important since these animals have problems maintaining body temperature, spending a long-time in energy-saving torpor. Overall, clear trade-offs between lifespan extension and physical vigor are observed (105, 106). Thus, in the wild, such mutants would be unlikely to survive and show a longevity phenotype. In this case, these findings fail to directly translate to human biology. Analogous mutations to those in Ames or Snell Dwarf mice can also occur in humans, for example in Laron syndrome. These individuals have a reduced risk for cancer and type 2 diabetes. On the other hand, they often suffer from decreased stature, prominent forehead, depressed nasal bridge, underdevelopment of mandible, truncal obesity and micropenis in males (107). Moreover, the risk of cardiac disease mortality is increased, and more frequent deaths are reported from convulsive disorders and other non-aging-related causes (107). Most strikingly, despite a major reduction in “pro-aging signaling” (107), at least as defined in model organisms, mutations of the pituitary-growth hormone signaling axis in humans are not correlated with longevity (18, 108, 109). Collectively, while studies on aging processes in model organisms provide valuable insights into the molecular mechanisms, it is crucial to recognize that these organisms are not simply smaller versions of humans and validation of the findings in human cohorts remains essential.

2 Proposed anti-aging drugs and interventions

Studies in model organisms, in some cases complemented with human data, have revealed signaling pathways, cellular processes and key regulators to be involved in controlling longevity, so-called “hallmarks of aging”. Hallmarks of aging are defined as processes that 1) exhibit a time-dependent manifestation during aging, 2) accelerate the aging process when intensified, and 3) slow down, stop or even reverse aging when modulated in the opposite direction (110). Twelve hallmarks of aging have been proposed: genomics instability, telomere attrition, epigenetic alterations, loss of proteostasis, compromised autophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation and dysbiosis (110). Even though “hallmarks” and “pillars of aging” have been proposed, these are largely based on associative observations, and fail to differentiate between causal events, epiphenomena, compensation or decompensation (111). Nevertheless, interventions and pharmacological agents have been designed and postulated to exert “anti-aging” effects (112) often aiming at re-establishing dysregulated cellular properties, as defined in the aging hallmarks (Figure 1) (38, 110, 113–128).

Examples include compounds mitigating the accumulation of reactive oxygen species (ROS)-caused damage (e.g. resveratrol, curcumin, astaxanthin, epigallocatechin-gallate, protandim, melatonin, spermidine or methylene blue), increased inflammation (e.g. berberine, 17- α -estradiol, acetylsalicylic acid or nordihydroguaiaretic acid), compromised autophagy (e.g. berberine, spermidine, rapamycin or caloric restriction), impaired stem cell function (e.g. spermidine, young blood/plasma or stem cell therapy), a decline in NAD⁺ levels (e.g. NAD⁺ precursors and boosters such as nicotinamide riboside or nicotinamide mononucleotide), excess hepatic methionine (e.g. glycine or methionine restriction), disturbed glucose homeostasis (e.g. metformin, acarbose, 17- α -estradiol or canagliflozin), cell senescence (senolytics such as fisetin, dasatinib and quercetin, berberine or curcumin), overactivation of mammalian target of rapamycin (mTOR) signaling, anabolism and dysregulated proteostasis (e.g. rapamycin, spermidine, growth hormone or caloric restriction), an overactive renin-angiotensin-aldosterone (RAA) signaling (e.g. enalapril) or epigenetic drift (e.g. cellular reprogramming or rejuvenation) (38, 110, 113–128). However, at the moment, none of these have been successfully been tested in human aging, and the effects of most of these interventions and drugs fail to be broadly replicated even in model organisms, showing considerable species, strain and sex differences (129). Rapamycin is one of the very few exceptions, with an effect on aging observed in different species and mouse strains (130–132), with positive outcomes in the Interventions Testing Program (ITP) of the National Institute on Aging (NIA) (133, 134). Besides the conceptual conundrum of a single compound to be able to alleviate multifactorial aging, other caveats exist that caution the use of many of these drugs in humans. (135) In the following sections, several examples will be presented that illustrate the potential and pitfalls of “anti-aging” medication. A comprehensive discussion of all proposed interventions is beyond the scope of this review, indeed might be futile considering the missing clinical data on human health and longevity at the present time. For future development, challenges for translatability of pharmacological interventions have been described (135). In addition to these, a couple of

additional steps should be considered. First, reproducibility in pre-clinical models, as for example assessed in the ITP, might help to prioritize compounds. Second, validation in short-term randomized clinical trials should be benchmarked against biomarkers of aging with reliable data such as the physiological parameters discussed below. If positive, both in terms of efficacy of biomarker modulation as well as safety and tolerability, long-term randomized clinical trials should be done, which, even if costly, would provide data on hard clinical endpoints including mortality and disease risks. Moreover, such long trials would also reveal the safety, tolerability and adverse effects profile in chronic treatment. At the moment, none of the proposed pharmacological or interventional agents fulfill these criteria.

2.1 Pharmacological agents: repurposed and new drugs

2.1.1 Resveratrol: Resveratrol is a polyphenol hailed as activator of sirtuin 1 (SIRT1) and as a strong promoter of health and longevity (136, 137). However, initial findings could not be reproduced in mice (138), fruit flies (139), roundworms (139) or yeast (140). In fact, binding of resveratrol to SIRT1 (or the yeast orthologue Sir2) might have been an experimental artefact (140–142). Moreover, the nature of sirtuins, including SIRT1, as “longevity genes” has been questioned (143). It thus was of little surprise that a multi-million endeavor of developing drugs based on the resveratrol/SIRT1 hypothesis failed (38, 143, 144). Nevertheless, resveratrol has been tested in various clinical trials for different indications, however to date with little success, controversial results and poor evidence for efficacy (145–147).

2.1.2 Metformin: Metformin is one of the most widely prescribed medication for type 2 diabetes. This drug is in general safe and well-tolerated, can however be associated with severe side effects including lactic acidosis, vitamin B12 deficiency, nephrotoxicity and lower testosterone levels (148, 149). Promising initial results of lifespan extension in model organisms could not be universally reproduced (150). Similarly, early results of improved survival of type 2 diabetes patients on metformin were not substantiated (151, 152). Thus, while the usefulness of metformin in type 2 diabetes is uncontested, a potential application in healthy individuals is strongly debated (153). Intriguingly, in a 40-months study in 12 male cynomolgus monkeys, signs of improved brain function and morphology, and attenuated transcriptional fluctuations in several tissues were reported, along with mitigation of some of the proposed aging hallmarks (154). Whether these effects contribute to broad and *bona fide* aging benefits on health and longevity remains to be determined, as will translatability to humans (155).

2.1.3 Rapamycin: Rapamycin, a pharmacological inhibitor of mTOR activity, has originally been used as an immunosuppressant drug, e.g. in organ transplantation, but is in the meantime applied more broadly, for example in coronary stents to prevent restenosis, lymphangioleiomyomatosis, vascular malformations, facial angiofibroma or in different types of cancer (156). Based on the robust and highly reproducible effect of rapamycin on health- and lifespan in different model organisms, the use of rapamycin or rapalogs, compounds derived from the parent drug, in anti-aging treatment of humans has been proposed (157). Surprisingly, in terms of gene expression, rapamycin treatment however results in pro- and anti-aging profiles, at least in skeletal muscle (158). Moreover, different

muscles seem to exhibit divergent responses to rapamycin treatment (158, 159). It is now also clear that, contrary to initial hypotheses (160), rapamycin is not a “caloric restriction mimetic”, since rapamycin treatment and caloric restriction engage overlapping and distinct signaling pathways, and thus lead to at least partially divergent outcomes on the aging process (159, 161). To date, no clinical trials evaluating the effect of rapamycin on longevity or healthspan have been performed. However, a number of clinical trials using rapamycin or rapalogs in healthy individuals and patients suffering from age-associated diseases have led to mixed outcomes, and thus necessitate additional studies (162). Of note, most of these clinical trials were relatively short, some with a single dose of rapamycin or a rapalog. Extrapolation of tolerability, safety and potential adverse effects to a potential longer-lasting “anti-aging” treatment thus is difficult. Importantly, adverse effects occurred in these trials, even though to a lesser extent than those reported in long-term treated kidney transplant patients (162).

Geroprotective use of rapamycin and rapalogs will thus have to be done under consideration of expected on-target and potential adverse effects. First, the inhibition of mTOR by rapamycin in B and T cell activation is leveraged for the immunosuppressive effect in organ transplant recipients, linked to an increased susceptibility for life-threatening infections and sepsis in these and cancer patients (163). Immunosuppression obviously would not be desired in geroprotection, and might have not been seen in pathogen-shielded animal studies. However, signs of modulated adaptive immunity leading to immunostimulation in some trials indicate that the problem of immunosuppression might be preventable under certain conditions. For example, the rapalog RAD001 improved adaptive immune function, while the selective mTOR complex 1 (mTORC1) inhibitor RTB101 increased the risk for respiratory illness in an unsuccessful clinical trial (164). A second on-target effect is related to the anti-proliferative effect on endothelial and smooth muscle cells, thereby exerting anti-angiogenic outcomes, one of the main principles of rapamycin treatment of renal carcinoma (165). In fact, the deterioration of vascular function observed during aging can be ameliorated by elevating vascular endothelial growth factor (VEGF) signaling, resulting in enhanced health- and lifespan in mice (166). Hence, this effect could be negatively affected by the suppressive influence of mTORC1 inhibitors on VEGF. Other consequences of the anti-angiogenic action of rapamycin include abnormal growth of the chondro-osseus junction, at least seen in rats (167), as well as diminished wound healing (168), as well as dysregulated menses and uterine growth in women (169, 170). A more general impact on fertility is implied by gonadal dysfunction, as well as impaired spermatogenesis in men (171). Then, a broad metabolic dysregulation has been reported as unwanted response, including the development of hyperglycemia, hypercholesterolemia, hypertriglyceridemia, dyslipidemia and diabetes (162, 172–174). Finally, in preclinical mouse models, microglial mTOR has been found to enhance β -amyloid plaques clearance in an Alzheimer’s model, with inverse effects of rapamycin, indicating that pharmacological inhibition of mTOR could promote the risk for this neurodegenerative disease (175). All of these concerns will have to be addressed before long-term geroprotective treatment with rapamycin or rapalogs will be attempted.

2.1.4 Senolytics: Senolytics target senescent cells (“Zombie cells”) that are permanently proliferation arrested and characterized by the senescence-associated secretory phenotype (SASP), with potential detrimental effects on neighboring non-senescent cells (176).

Through poorly understood mechanisms, senolytics selectively remove senescent cells that accumulate in different tissues during aging, leading to functional retrieval reminiscent of younger tissue. This strategy is highly promising, with outstanding results in pre-clinical model organisms. However, again, human translation is still missing. Moreover, cell senescence is not merely a byproduct of aging, but a physiological process that is crucial in different contexts, for example embryogenesis, wound healing or tissue/organ regeneration (176–179). Based on this knowledge and pre-clinical studies, a pro-senescence therapy might actually be appropriate in several diseases, including pulmonary hypertension, atherosclerosis, liver and renal fibrosis, glucose intolerance, rheumatoid arthritis as well as cancer prevention and treatment (177). Thus, the choice of pro- or anti-senescence therapy could strongly depend on co-morbidities and differential diagnosis, in particular when senolytics are envisioned as geroprotective treatment in the elderly (177).

2.2 Anti-aging interventions: back to the roots?

2.2.1 Cellular reprogramming and (epigenetic) rejuvenation: During embryonic development, terminally differentiated tissue cells emerge from pluripotent stem cells, and originally from the omnipotent fertilized egg cell (180, 181). Since all of these cells share the same genome, the expression of the genes that define tissue identity has to be tightly regulated, most dominantly by epigenetic modifications that affect chromosomes, histones and the DNA. Conrad Waddington’s landscape provides a theoretical framework in which stochastic alterations of epigenetic modifications and gene expression are increasingly restricted and channeled during the developmental decision making process. This unidirectional waterfall model has been challenged and expanded. For example, dynamic changes in epigenetic modifications are observed in cell fate transitions, de-differentiation and trans-differentiation, e.g. in tissue regeneration (181, 182). Moreover, somatic cell nuclear transfer or the production of induced pluripotent stem cells with transcription factors provide further proof that “epigenetic barriers” can be overcome and cells reprogrammed (183). Since, arguably, reprogramming of tissue to pluripotent stem cells could be interpreted as a “rejuvenation” back to a developmentally younger version, this technique has also gained traction as a possible anti-aging intervention (184, 185). In this case, potential age-associated epigenetic events, which could either be stochastic or deterministic, would be reversed. Evidence for such a drift emerges from various observations in aging tissues and organs, including loss of heterochromatin, alterations in histone post-translational modifications and DNA methylation, accumulation of histone and chromatin modifier variants, modifications of the levels and/or activity of non-coding RNAs and transposable elements, or faster and less controlled transcription (186–188). Thus, if such events were reversed, a more youthful and healthy cell function could potentially be achieved. Full reprogramming of an old organisms, for example using the four “Yamanaka factors” Oct3/4, Sox2, Klf4 and c-Myc (OSKM) obviously would be deleterious if all cells were de-differentiated into embryonic-like stem cells, leading to loss of organ function, severe health problems, cancer and death within days (184). For therapeutic purposes, partial reprogramming would be the goal to increase “stemness” without pluripotency acquisition.

Despite various successful reports in rodent animal models, human translation of reprogramming is still elusive. First, the mechanistic underpinnings of reprogramming are only poorly understood, and therefore, the targeting of an exact endpoint in “partial” reprogramming currently is impossible. Accordingly, a large heterogeneity in outcomes is found *in vitro* and *in vivo*. In partially reprogrammed cells in culture, heterogeneity emerges from transient phenotypes/rejuvenation, epigenetic remnants and memory, loss of morphology, cell fate anomalies, or non-natural progenitor phenotypes, of which the extent varies by method, tissue source, progenitor cell age, cell environment and other experimental factors. A similar heterogeneity is observed in mice *in vivo*: abnormal tissue growth, teratoma, tumors and metastases, activation of transposable elements, hepatic and intestinal failure and other pathological events have been reported, frequently leading to premature death (184, 189–191). Again, as outlined in the discussion of drug treatment, partial reprogramming in humans has to consider the much longer lifespan, which could exacerbate many of the reported adverse effects in rodents. Of note, the Yamanaka factors c-Myc and Klf4 can act as oncogenes, while the other two, Oct3/4 and Sox2, often are highly expressed in tumors (190). Inversely, several tumor suppressor genes, including p53 and Ink4a/Arf act as barriers to reprogramming. Moreover, reprogramming is not only stimulated by the presence of cell senescence, but also triggers this process, leading to higher number of senescent cells and the presence of SASP in the microenvironment (184, 190). At the moment, based on our lack of deeper understanding, despite reported success in mice, partial reprogramming might be best described metaphorically with a blindfolded shotgun blast leading to a massive effect, but very far from clinical translation.

2.2.2 Hormones, stem cells and young blood: Other attempts at rejuvenation are aimed at restoring youthful function with the use of circulating hormones and other signaling factors, or with stem cells. Sex hormones such as testosterone, estrogen or progesterone, growth hormone, dehydroepiandrosterone (DHEA) or thyroid hormone have been postulated to bring back youthful features when prescribed in elderly individuals (192, 193). However, outside of clinically relevant and accepted applications, there currently is no proof for a general anti-aging effect, and serious reservations about long-term effects, adverse outcomes and risks exist.

Similarly, the injection of stem cells currently lacks evidence for anti-aging properties as opposed to the well-documented use in regenerative medicine in degenerative disorders (194). Several factors might be responsible for that: for example, exogenous stem cells might not be able to fulfill their purpose if the corresponding stem cell niche is aged. Moreover, several hurdles will have to be overcome (194). Since stem cells also undergo aging-related changes that compromise function (195), autologous donor cells might first have to be “rejuvenated”, or heterologous donor cells from young compatible donors be used. The optimal type of (mesenchymal?) stem cell will have to be identified. Heterogeneity amongst cells and between donors, acceptors and isolation protocols will have to be accommodated. Adequate *in vitro* expansion and mass production methods will have to be established to meet the very high demand for systemic treatment. Standardization of approaches, as well as methods to track the fate and function of transplanted stem cells

will have to be performed. Finally, potential long-term effects, e.g. tumorigenesis, will have to be considered.

Parabiosis experiments in rodents have shown the potential of young blood to rejuvenate organ function in connected old animals, implying the existence of circulating factors that mediate the corresponding effects (196). At the moment, the identity of such factors is not known. Moreover, based on single heterochronic blood exchange experiments, it might be possible that the extent of detrimental effects of old blood surpasses that of the benefits of young blood, suggesting that at least in part, the rejuvenation in old animals in parabiosis might emerge from dilution of such pathological factors (197). Geroprotective benefits of therapeutic transfusion of young plasma in humans have not been documented so far. Moreover, known risks of infusion of human plasma include presence of infectious agents, serious allergic reactions, transfusion-related acute lung injury or overload of the circulatory system. In light of these risks, and the complete absence of proven clinical benefits on aging or most aging-related pathologies, the FDA currently advices caution for the commercialization of infusion of plasma obtained from young donors (198). Moreover, ethical issues about donor recruitment and compensation, and about disparities in access exist (199). Some of these might be solved once effective factors have been identified and can be recombinantly produced.

2.2.3 Caloric restriction: A seminal study of McCay, Crowell and Maynard, published in 1935, investigated whether undernutrition in rats retards growth (200). Intriguingly, they found that the calorically restricted and growth retarded animals exhibit an increased lifespan. Even though this effect was only seen in males, and not the already longer-lived females, this paper stimulated an exponential interest in caloric restriction as longevity intervention (201). Indeed, the initial observation was replicated and expanded in various canonical and non-canonical model organisms, including yeast, *C. elegans*, *D. melanogaster*, mice, dogs, and even water fleas, silkworms, spiders or fish (202). Due to the robustness of the effect, caloric restriction has been postulated as the “gold standard” for life-extending interventions. In a general sense, the payoff of caloric restriction on longevity decreases with animal complexity (203), from ~200% in yeast to ~100-200% in *C. elegans*, ~100% in *D. melanogaster*, ~30-50% in mice, and ~15% in dogs (mean, not maximal lifespan (204)), with significant variations between strains and experimental protocols. To get better insights into translatability to humans, two independent trials in rhesus monkeys were undertaken, with surprisingly different outcomes (205, 206). In one study (205), an extension in lifespan was projected based on the available data, which became significant when non-aging-related mortality was excluded (estimated at ~7% (207), thus smaller than the effects in dogs and lower organisms). In the second study (206), no such effect was observed, and the validity of caloric restriction as longevity intervention in non-human primates questioned (208, 209). Importantly, the study design differed in several key aspects (207): first, monkey breeds were not equivalent. Second, the first study had an *ad libitum* fed control group, while the control group in the second trial was food restricted to avoid overfeeding and excessive weight gain. Third, the composition of the food was not the same, with 28.5% sucrose in the first, and 3.9% sucrose in the second trial. Maybe as a direct consequence, co-morbidities were unequally distributed, for example leading to more than 40% of the control animals

to develop diabetes in the first compared to 12.5% in the second trial. Thus, the positive outcome for caloric restriction on health and longevity in the first trial could primarily be based on the reduction of the pathological consequences of overfeeding of a glucose-rich diet. Indeed, in the second study, lower body mass, lower adiposity and improved survival was already observed in the control animals (compared to the counterparts of the first study), thus even in the absence of caloric restriction, at least in the males. As a consequence, the survival of the male control cohort in the second study was the same as the calorically-restricted males in the first and second trials, with no statistical differences. In females, no differences in body mass, adiposity and survival was seen when comparing control and calorically restricted groups in the second study, pointing towards a sex dimorphism in the response to this intervention.

The potential benefits of caloric restriction in extending lifespan by primarily reducing pathological effects of overfeeding or unhealthy diets can also be inferred from studies in rodents. In mice and rats, the lifespan extension directly correlates with the propensity for adult weight gain, thus very little effect in lean, and larger effects in strains that gain more weight, either based on the genetic background, or on differences in food composition in the same strains (210). Similar to the outcome of the first rhesus monkey trial, many reports of lifespan extension in rodents could be due to the experimental conditions with *ad libitum* overfed control mice, unhealthy dietary composition, and a marked sedentary state in normal home cages (83, 84, 97). Indeed, mice caught from the wild have lower body fat (~3-5%) than most laboratory strains (~9-22%, ~22% in C57BL/6) under standard conditions (83), and caloric restriction has no effect on mean longevity in wild mice (211). Even in laboratory mouse strains, the response of lifespan to caloric restriction is far from uniform. In fact, a considerable number of mouse strains react only very little, and some even experience a negative, life-shortening effect (212-214). Indeed, in genetically diverse mice, heritability had a larger effect on lifespan compared to dietary restriction (215). Of note, in some of these mice, even in those experiencing increased longevity, dietary restriction was associated with compromised health, e.g. loss of lean mass, compromised immune system function, or disruption of erythroid cell populations (215). These findings are of obvious importance when considering the genetic diversity of humans (216). Moreover, as reported by McCay and colleagues in the rat strain used in their study published in 1935 (200), a sexually dimorphic response is seen in many mouse strains, which can lead to diametrically opposite effects of caloric restriction on lifespan in males and females (212-214). Strain-specific responses are not only observed in rodents, but also in *D. melanogaster* and *C. elegans*, in which the naturally top 10% longest-living strain obtain significantly less life-expanding benefits from caloric restriction compared to the bottom 10% (217, 218).

All of these results have high relevance when considering caloric restriction for human health- and lifespan extension, from the decreasing payoff when going from lower to higher organisms to the clear genetic and sex-specific contribution that shapes the response to this intervention. Furthermore, other issues would have to be considered, tested and validated (210, 219, 220). For example, it is not clear what the baseline caloric intake is from which restriction is calculated. How would inter-individual variations in energy metabolism be taken into account, both in terms of basal energy metabolism including non-exercise activated thermogenesis (NEAT) as well as that contributed by physical activity? Then,

Europe PMC Funders Author Manuscripts

Europe PMC Funders Author Manuscripts

the optimal extent of restriction, age of initiation and dietary composition are unknown in humans. Furthermore, adherence might be compromised by the constant, unpleasant feeling of hunger (221). Finally, psychological factors of prolonged caloric restriction, e.g. on mood, depression or aggression, and reported adverse effects, e.g. frailty, reduced cognitive performance, impaired wound healing and immune function will have to be dealt with (94, 222). Based on the data obtained in rodents and primates indicating that the effect of caloric restriction on health- and lifespan might be rather due to an amelioration of pathologies triggered by overfeeding and sedentariness, a balanced and calorically-controlled diet, linked to adequate physical activity, likely is the healthier, safer and more efficient choice, lacking many of the potentially adverse effects, drawbacks and limitations of caloric restriction (or other specialized diets) in humans (94). Indeed, no clear evidence of longevity benefits of *bona fide* caloric restriction in humans currently exist (66, 202). Moreover, similar to the non-human primate data, human studies such as the multicenter, phase 2, randomized controlled Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) trial indicate that health benefits, in this case in a young (21-50 years) population after 24 months of a caloric restriction of 25% from baseline calorie intake, primarily segregated to men and individuals with a higher body mass index (BMI) (223).

2.2.4 Telomere lengthening: Other interventions have been proposed, some of which have even been commercialized even though little to no human data on benefits exist, and significant adverse effects could ensue. For example, based on the shortening of telomeres in the aging process, telomerase gene therapy has been proposed as an anti-aging strategy, introducing this enzyme, which can elongate telomeres, with adeno-associated viral vectors (AAVs) or cytomegalovirus vector (CMV) (224). At the moment, there is no proof of efficacy of therapeutic benefits in humans. Moreover, several caveats should put a brake on such endeavors: first, telomerase re-activation is seen in ~85% of cancers (225). In fact, overlong telomeres are also associated with diseases in humans, e.g. familial clonal hematopoiesis (226), as well as increased cancer risk (227). The levels of telomerase after overexpression with viral vectors will be difficult to be adequately titrated in different cell types and tissues in order to evoke “healthy” telomere lengthening. Finally, viral vector-based gene therapy has inherent risks that might overshadow the so-far non-existent evidence of beneficial effects in human aging (228, 229). It thus is not surprising that such “treatments”, based on telomerase, follistatin or klotho, are not approved for clinical application in the USA or Europe for aging or related fields, and extreme caution is warranted towards commercial offers in countries with lax or non-existing regulation. Notably, most of these suppliers do not guarantee safety or efficacy (230).

3 Lifestyle-based interventions in health and longevity

3.1 Nature: coincidence, genetics and epigenetics

In contrast to these experimental approaches, a number of interventions, lifestyle and behavioral choices have been shown to provide not only a good correlation with, but even predictive power for human morbidity, mortality, health- and lifespan (Figure 2) (231–233).

Apart from the fixed **genetic endowment** and the **stochastic outcome of random events** (e.g. accidents), most of the other parameters can be voluntarily changed, although some require a societal and political effort beyond the capability of an individual. Of note, genetic and lifestyle factors associate with lifespan in an independent manner, indicating that a healthy lifestyle can overcome genetic risks and convey health benefits even in a genetically “unfavorable” context (234). Moreover, environmental aspects by far exceed polygenic factors in the explanation of premature mortality (235).

The dynamic makeup of the **epigenetic landscape** can be inherited, predetermined and yet be pliable. For example, the epigenetic changes elicited by the experience of famine, e.g. the Dutch hunger winter during World War II, were imprinted in the individuals that experienced this traumatic event, and were transmitted to their children and grandchildren, in this case with detrimental health effects on disease risks and life expectancy (236). Obviously, you cannot choose your parents based a benevolent genetic endowment, and you cannot influence their environmental exposures and lifestyle choices, which can result in favorable or unfavorable genetic traits and epigenetic marks for health, aging and longevity. However, all of the lifestyle choices and behaviors discussed here will most likely result in epigenetic changes that can be beneficial or detrimental. While for most of these factors, this still has to be reliably shown, ample evidence for exercise-mediated epigenetic modifications with favorable health outcomes has been provided (237, 238). These effects can be potentiated with diet and potentially other interventions (239).

3.2 Nurture: lifestyle and other factors modifiable on the individual level

Importantly, none of the modifiable factors (including physical activity, nutrition, restorative sleep, no excessive alcohol, no smoking or opioid use, stress management and social connections) are mutually exclusive, and additive or synergistic effects can be achieved when combined (240–253), even at old age (254), or in regard to various diseases such as dementia (255, 256), frailty (257), diabetes (258), brain health (259, 260), stroke (261), or cancer (262). For example, while adopting one lifestyle factors reduces the mortality risk by 26%, the implementation of eight factors results in a lowering of the mortality risk of 87% (241). Of these, **physical activity** is by far the best intervention (“Exercise is Medicine” (263)), and is modifiable on a personal level with clear benefits for health and longevity (264–285), far beyond cardiovascular mortality (286–290), and regardless of age (291) or sex (292, 293). Health benefits of physical activity have already been proposed in ancient cultures, since two and more millennia ago (294, 295). Exercise, like aging, is multifactorial, affecting almost every organ and tissue in the human body (296). It thus is not surprising that all of the proposed hallmarks of aging are ameliorated by this intervention (297–300). The underpinnings of this potent effect are however unclear: one hypothesis proposes that the stress elicited by an acute exercise bout mimics some of the changes observed in aging, and, if done repeatedly in training, provoke a better protection and resilience against these processes (301). However, it is noteworthy that despite an apparent risk-protection paradox, for example due to the marked stress exerted on the cardiovascular system during an endurance exercise bout, regular physical activity reduces mortality risks and optimally prepares the body for ensuing perturbations in an effective and long-term sustainable manner (302). Exercise accordingly rivals existing drugs in terms of efficacy

to prevent and treat a number of pathologies (303–305). Inversely, a sedentary lifestyle is a strong and independent risk factor for many chronic diseases and mortality (264, 306–310). Of note, most data on the effect of physical activity on mortality are derived from observational studies as opposed to the very rare randomized clinical trials with mortality as specified primary endpoint (311). Nevertheless, the wealth of data indicates a higher probability for a direct, causal relationship compared to mere association (311). Physical activity and exercise will be discussed in more detail in the sections below.

Dietary patterns and **nutrition** scores are likewise associated with frailty and mortality (312, 313). However, the effect of different diet modalities and macronutrient enrichment in human aging remains debated (94). Moreover, rodent studies, e.g. showing a beneficial effect of low protein and amino acid diets on longevity, might not be extrapolatable to humans (94), in which anabolic resistance necessitates higher protein supplementation to mitigate age-associated muscle mass loss and frailty (314–319), and in whom high protein diets might improve sarcopenia (320) or mortality, even in patients with chronic kidney disease (321). Such effects of higher protein intake are significantly boosted by concomitant resistance exercise training (322). In any case, it is clear that a **balanced** (for all necessary macro- and micronutrients (323, 324)) and **calorically-controlled diet**, possibly devoid of ultra-processed food (325), is crucial to lower the risk for obesity, cardiovascular and metabolic disorders, thereby helping to maintain health from young to old age (326–328), in combination with adequate hydration (329). The higher relevance of the overall healthy eating patterns over specific macronutrient depletion/enrichment was accordingly highlighted in the Dietary Guidelines for Americans (DGA) 2020-2025 (327). Moreover, the impact of healthy food choices on mortality has been demonstrated (330, 331), in particular in, but not limited to elderly individuals who are often plagued by malnutrition and inadequate protein intake (332). In the future, individual differences in food absorption, metabolism and excretion might be leveraged to design precision/personalized nutrition, conferring additional health benefits (333, 334). However, better ways of monitoring and recording dietary habits will have to be devised to circumvent often unreliable self-reporting (335, 336).

The optimal amount of **sleep** is age-dependent, with a recommended duration of 7–9 hours per night for young adults and adults, and of 7–8 hours per night in older adults, following a healthy pattern with little interruptions, insomnia, snoring or other events that lower sleep quality (337, 338). Both shorter (<6 hours) as well as longer (>9 hours) sleep is associated with an increased mortality risk, most prominently for cardiovascular, but also other types of mortality (339–344) or dementia (345). Similar to most other lifestyle interventions, sleep is interdependent on other lifestyle and societal factors, for example socioeconomic status, depression and further psychiatric issues, alcohol dependence or a sedentary behavior (346). Interestingly, mortality associated with overlong sleeping seems to be predominantly affected by such environmental factors, while that of shortened sleeping exhibits a stronger heritability component (347). Overall, sleeping patterns not only contribute to the prediction of body characteristic (e.g. visceral adipose tissue) and disease risks (e.g. insulin resistance), but can inversely also be inferred by lifestyle factors to over 50% (348). Importantly, changes in sleeping behavior towards optimal patterns can reduce mortality risks (339), even

when performed in the form of weekend catch-up sleep (349). Sleep quality can for example be promoted with endurance or resistance training (350, 351), in normal sleep as well as in the context of sleep disorders (352). At least somewhat related to sleep patterns, disruption of circadian rhythms with bright night- and dimmed day-time light is sufficient to increase mortality risks (353).

In the elderly, poor **cognitive performance** is an independent risk factor for mortality (354, 355). Unfavorable results in cognitive tests could be the consequence of an unhealthy lifestyle or co-morbidities, with limited effects of cognitive training in old age (356). Accordingly, a causal relationship between sarcopenia and cognitive impairment (357) or a correlation between physical activity levels, muscle strength, working memory, and cognitive function have been postulated (358). Nevertheless, despite studies showing positive effects in healthy individuals (359), the efficacy of exercise to improve cognitive abilities in the elderly, in particular with already compromised function, is controversial (360–365), but might be boosted by multi-domain interventions that include physical activity (366, 367). When undertaken at earlier age, interventions, e.g. focused on healthy diet, physical activity and abstinence from smoking, might help to build a cognitive reserve, with clear benefits of lifetime intellectual and cognitive engagement (356, 368, 369). Of note, skeletal muscle mitochondrial oxidative capacity, a parameter that is highly pliable by endurance training, is associated with preserved brain structure, in particular of areas involved in cognition, motor function and sensorimotor integration, hinting at a correlation of exercise adaptations and muscle mass with brain health and structure (370–377). Finally, early detection and monitoring of trajectories could be improved by combining functional (378), imaging- and blood biomarker-based approaches (379) and might help to distinguish inter-individual differences present from birth/young age from those arising during aging (380).

Preventative health checks and monitoring can contribute to the risk assessment for various diseases and disease-specific and overall mortality (381), e.g. by periodical recording of blood pressure, body mass as well as waist-hip ratio, cholesterol, lipid and glucose levels. However, for many screenings, clear benefits have not been established, and problems with false positive and false negative findings can arise. Thus, in a healthy population, random general health checks might not help to decrease mortality risks (382). In contrast, well-designed, evidence-based health monitoring, combined with an up-to-date vaccination status (383, 384), will help in the prevention, early detection and treatment of pathologies, thereby reducing mortality risks (385, 386). Moreover, such programs can trigger healthy lifestyle behavioral changes in the monitored population (387).

Risk behavior can be a strong driver of mortality, for example in adolescents (388). However, also in later stages throughout life, engagement in risky behavior such as violence, substance abuse, unsafe sexual habits, or reckless driving highly increase the chance of death (389). In a number of countries including the USA, gun ownership is likewise associated with a higher mortality risk, with an influence on both homicide as well as suicide rates (390–393), and constituting one of the leading causes of death in children and adolescents (394). This is one of the reasons why life expectancy in the USA lags behind that of other rich countries (395).

Smoking still is one of the strongest modifiable drivers of premature mortality, even though smoking rates are declining in many countries (396, 397). Interestingly, smoking habits could contribute to the sex differences in life expectancy (398, 399). The abuse of other recreational drug likewise increases mortality risks. Alcohol, for example, can not only directly lead to fatal pathological events (400), but also increases risk behavior such as reckless driving, other violent and non-violent injuries, accidents, and can exacerbate psychiatric disorders and suicidal behavior (401, 402). Similarly, the opioid crisis in the USA leads to an estimated 3.1 million years of life lost (38 years per death), and contributed to the decrease in life expectancy between 2019 and 2022 (390, 403).

With regard to social and mental factors, **psychosocial stress** and stress-related disorders are associated with the risk for several chronic diseases and increased mortality (404–407). Intriguingly, a bidirectional association between sedentary behavior and psychosocial stress has been reported (408). In contrast, **optimism** shows a positive association with cardiovascular events, mortality and longevity (409–411). The amount and quality of **social interactions** are also predictors of mortality (412, 413). Loneliness and isolation promote stress, while interpersonal helping behavior decreases stress-related mortality risks (414–416). As with other lifestyle factors such as overlong sleep, loneliness could constitute a causal or a surrogate marker, being potentially indicative of comorbidities such as frailty (417), anorexia or sarcopenia (418), socio-economic constraints or other confounders (419).

All of these lifestyle factors can be influenced by behavioral decisions. To a certain extent, this is also the case for **sun exposure**, although geographical and climate-based limitations exist. Insufficient sun exposure increases the risk for many pathologies, and ultimately leads to a significant number of preventable deaths (420–422). Notably, many of the health benefits of adequate sun exposure are independent of vitamin D production, and supplementation falls short in preventing the pathological outcomes of insufficient sun exposure (420, 421). Obviously, harms of excessive sun exposure, in particular the development of skin cancer, should be avoided, such as sunburns or inadequate protection of eyes and skin at times or seasons with high ultraviolet radiation levels (420, 421, 423, 424).

3.3 Nurture: societal and political aspects

The opportunities for a change in **socioeconomic status** depend on a variety of factors, many of which, for example access to high-quality and affordable education, fair income and taxation systems, or absence of discrimination and “glass ceilings”, can only be achieved on the societal and political level. Educational disparities (425) and low socioeconomic status increase mortality risks even when adjusted for other risk factors (426–429), with up to 20 years of life expectancy disparities between poor and wealthy areas in the USA (430, 431). In fact, at least in the USA, of all social determinants, socioeconomic factors have been proposed to contribute most to health outcomes, length and quality of life, (about 40-47%), surpassing health behaviors (30-34%), clinical care (16-20%) and the physical environment (3-10%) in importance (432, 433). It is noteworthy that these effects apply to years lost and years of functioning lost (434). Moreover, an accumulation of the consequences of low socioeconomic status on health and life expectancy over the course of lifetime has been proposed, with consequences of experience in childhood affecting adult health (435).

Thus, the childhood postcode can, at least in certain countries like the USA, predict lifetime risks for many pathologies reasonably well (436), together with other environmental factors much better than contemporary polygenic scores (235, 437). Strategies to overcome socio-economic hurdles and provide the means to achieve a healthy lifestyle have been proposed but, in many cases, remain to be implemented (438, 439).

The socioeconomic status might also limit the availability of or access to affordable high-quality **healthcare** in countries in which this is restricted, e.g. those without universal health care (233), or where inequalities in access such as to primary care physicians exist (440), or differences in health care spending are observed (441). Such disparities lead to a high number of preventable deaths (442, 443). Most prominently, vast differences in global probability of premature death are observed, in part driven by infectious and maternal health conditions more prevalent in certain regions, e.g. sub-Saharan Africa, than others (233, 444). Amongst the Organization for Economic Co-operation and Development (OECD) high-income countries, the USA is an outlier in terms of healthcare costs and outcomes (445–450). Both when expressed as per person or as percentage of gross domestic product (GDP), healthcare spending is substantially higher in the USA compared to the other countries. Even though the situation has improved with the historic passing of the Affordable Care Act, a significant proportion of the population in the USA remains uninsured, whereas in the other OECD countries, health care is mandatory through public and/or private programs. Despite the higher spending, life expectancy at birth is three years lower in the USA compared to the OECD average, and the share of avoidable deaths (normalized to 100'000 people) higher, including having the highest OECD rates for infant and maternal mortality (451, 452). These data illustrate that even in countries where the highest quality and cutting-edge medical care is available for those who can afford this, socioeconomic barriers and ethnic/racial disparities exist, with significant consequences on overall health and mortality outcomes (453, 454). Finally, as recent events have shown, healthcare policy should include an agenda for pandemic prevention, preparedness, response and recovery/reconstruction on the national as well as the global level (233). In fact, a chance of greater than 20% for a pandemic to occur in the next 10 years that will kill as many individuals as COVID-19 has been estimated (233). Related, but not limited to the COVID-19 pandemic, high quality **education** should not only aim at improving knowledge on the basis and application of all aspects of a healthy lifestyle, but also convey methods for critical thinking, assessment, and classification of scientific evidence and hypotheses, facts, mis- and disinformation, or fake news (455, 456).

Changing the consequences of anthropogenic **climate change** and **air pollution** are beyond the capabilities of individuals, and will require a coordinated effort on the nation and global scale. Nevertheless, clear effects on mortality have been reported. For example, the increasing fluctuations and extremes temperatures caused by human-made climate change will lead to deaths beyond affecting only the most susceptible populations, those with low socioeconomic status, infants and the elderly (457–460). Even in moderate climate zones, particulate air pollution is strongly associated with all-cause, respiratory, cancer, cardiovascular and other types of disease-specific mortalities (461, 462), as well as with brain health (463). This can be synergistically exacerbated by high temperatures (464).

Other types of pollution, for example environmental microplastics (465–469), endocrine-disrupting chemicals (470, 471), or (transportation) noise (472–474) might exert similar effects on disease and mortality risks.

4 Age-reversal-age-extension (ARAE) paradox: more might not be better

4.1 Interference between “anti-aging” drugs and epigenetic programming

For the lifestyle- and behavior-based factors that influence mortality, additive or synergistic effects have been shown, in the absence of adverse interactions or side effects. This seems to be somewhat different for the proposed preclinical treatments and interventions, in which some combinations result in additive or synergistic outcomes (475), while others could be irreconcilable. For example, the age-reversal-age-extension (ARAE) paradox has been proposed for epigenetic programming, in which drugs that promote genomic stability are incompatible with the reprogramming that flattens the epigenetic landscape to enable upward movement in the Waddington landscape (184). Such effects have been shown for some of the proposed “anti-aging” drugs that interfere with epigenetic reprogramming, including metformin starting at a concentration of 10 μ M (age intervention are often tested at 100 μ M), rapamycin starting at 1-2 nM (human plasma concentrations in rapamycin-treated patients range from 5-30 nM, and 50 nM are often used in longevity studies), or resveratrol starting at 20 μ M (most health benefits in model organisms are seen with concentrations of 10-25 μ M) (184). Thus, even if clinical benefits were achieved, potential interactions might preclude combination-based approaches of these proposed therapies.

4.2 Many of the proposed “anti-aging” drugs dampen exercise training adaptation

Additionally, the ARAE paradox or analogous paradigms can be expanded to other unfavorable interactions. As described above, epigenetic programming is inversely associated with cell senescence, thus facilitated by the presence of senescent cells, and itself triggering cell senescence (184). The outcome of a combination therapy based on reprogramming and senolytics therefore is uncertain. These issues are theoretical since all of these approaches are still experimental. More concerning are interactions with proven lifestyle interventions that have been reported in human trials. These have been mostly shown for exercise (37, 38, 476, 477), but might also apply to others. For example, resveratrol blunts the positive effect of endurance exercise on cardiovascular health and reduces the training effect by ~45% (478–480). Metformin dampens adaptations to endurance (481, 482) and resistance (483, 484) training by ~50%, and increases the rate of perceived exertion (485). Anti-oxidants (486), e.g. high doses of vitamin C and E, reduce the positive effect of exercise on insulin sensitivity (487), delay recovery from endurance (488), and diminish peak torque and total work in resistance training (489, 490). At least in mice, nicotinamide mononucleotide (NMN) reduces exercise benefits on hepatic triglyceride accumulation, insulin secretion from islets, and glucose tolerance in diet-induced obesity (491). Moreover, NMN might be associated with other adverse effects, in particular in certain patient populations (492, 493) or the elderly (494). Finally, inhibition of mTORC1, a key regulator of anabolism in resistance training (495–497), with rapamycin reduces stimulation of skeletal muscle fractional protein synthesis rates and growth in experimental settings of muscle hypertrophy in rodents (498, 499) and in resistance exercise in humans

(500). Interference with endurance training has not been tested so far. However, mTOR is also activated in this type of training modality (501). Moreover, one of the key therapeutic targets in rapamycin therapy in cancer, a reduction of angiogenesis and neovascularization (165, 167), could be relevant for endurance exercise-induced vascularization of muscle tissue, an important process in endurance training adaptation (296). Indeed, adverse outcomes on other types of physiological angiogenesis have been reported, e.g. uterine growth and menses or wound healing in which this process can be impaired in rapamycin-treated patients (168–170). Mechanistically, at least in part, the anti-angiogenic effect of rapamycin has been attributed to a positive effect of mTORC1 on the hypoxia-induced factor 1 α (HIF-1 α) (165). Since different exercise modalities result in reduced hypoxia in skeletal muscle tissue, HIF-1 α plays an important role in exercise adaptation (296), which could be impaired by rapamycin administration. Such potential harmful interference of drugs with exercise obviously should be avoided (37, 38, 97, 476, 477, 502, 503). For some, adjusted dosage and timing have been proposed to minimize potential antagonistic effects on exercise adaptation. For example, it has been speculated that restricted use of rapamycin on non-training days could mitigate adverse effects on muscle protein synthesis stimulated by resistance exercise. This however is questionable, and needs to be critically tested, in light of the long anabolic window with increased muscle protein synthesis (up to 48 hours and more) after a resistance exercise training bout (504, 505). Other factors should furthermore be considered. First, it is unlikely that the benefits of single compounds exceed those elicited by the multifactorial adaptations in exercise. Thus, failure to achieve optimal health outcomes might ensue due to the mitigation of the broad and proven effects of exercise that is not outweighed by the narrow effects of single pharmacological compounds. Second, even besides potential direct interactions, the use of an “anti-aging” drug could lead to reduced adherence to and compliance with lifestyle interventions, including physical activity or a balanced diet. Psychological effects of a false sense of “pharmacological health”, seemingly induced by geroprotective agents and putative “exercise” or “caloric restriction mimetics”, might diminish the motivation to engage in time-consuming, long-term and arduous activities if an attractive alternative seems as easy as taking a daily pill.

5 Molecular biomarkers of aging

Many of the problems that affect the study and potential treatment of human aging boil down to the long timeframe that is needed based on human life expectancy, as well as on our ignorance on the evolutionary and molecular underpinnings of this process (506, 507). Following large cohorts over years to decades in prospective clinical trials necessitates a high financial and logistical commitment. However, aging, a physiological (?) process experienced by every human, is not recognized as a disease by regulatory agencies, at least not at the moment. Accordingly, treatment and trials would by definition be performed in “healthy” individuals, with very high regulatory and ethical standards. To get around these issues, model organisms with shorter lifespans and lower ethical hurdles for experimentation are studied (80, 81). Furthermore, human aging biomarkers as surrogates to measure more short-term effects of treatments on aging progression are being investigated (507–511).

5.1 Molecular clocks: from epigenetics to metabolites

A number of such molecular biomarkers of aging have been proposed, from epigenetic marks to telomere length, transcriptomic and proteomic signatures, or glycoprotein profiles (507, 509, 512–516) (Figure 3).

Epigenetic clocks are based on the observation of changes in epigenetic modifications from embryonic development to aging. As described above, epigenetic programming attempts to roll these back to a more youthful state. Initially, DNA methylation events measured in saliva or blood samples were used to establish models to predict “biological age”. Later, epigenetic clocks were also measured in other tissues and cell types. At the moment, a lack of understanding of the molecular causes and consequences of these DNA methylation changes hamper obtaining mechanistic insights beyond the current correlative value. Recently, **histone marks** of aging have been proposed to perform with similar predictive power as epigenetic modifications (517). **Transcriptomic clocks** rely on the assessment of age-dependent gene expression profiles, e.g. in peripheral blood mononuclear cells or dermal fibroblasts. Most of these clocks however have only been tested in small cohorts, and are marred by inherently large transcriptional noise, in particular in aging.

Advances in mass spectrometry, antibody- or aptamer-based techniques have facilitated the development of **proteomic clocks**. Plasma protein signature however can be affected by organ function, e.g. that of the kidney. Nevertheless, recent attempts at establishing blood plasma protein biomarkers based on large human cohorts have shown promising results in terms of predictive power for organ health, morbidity and mortality (518–530). Indeed, of all the molecular/-omics clocks, plasma proteome biomarkers seem most advanced, both technologically as well as in terms of high-throughput human application and validation (531, 532). The continuous improvements in detection sensitivity and proteome coverage of mass spectrometry and DNA aptamer-/antibody-based platforms, combined with machine learning algorithms, will help to eventually push this approach to broad clinical application, even though costs currently are still prohibitive (531). **Metabolomic clocks** (533) have likewise benefited from better mass spectrometry methods, as well as state of the art nuclear magnetic resonance (NMR). However, many of the metabolites identified by NMR are of unknown structure, limiting the usability of untargeted metabolomics, further exacerbated by the noise in measurement. Nevertheless, metabolomics studies that include physiological biomarkers show promising associations in longitudinal human trials (534). Compared to these approaches, attempts at creating clocks based on **protein glycosylation, advanced glycation end products (AGE), chromatin marks** or state have so far been more limited. Finally, as an example for a non-omics based clock, **telomere analysis** determines telomere length as a function of age (535). Methodological issues however can lead to considerable variation, both between individuals, tissue types, or even between sampling sites in the same tissue (or heterogeneity between peripheral blood mononuclear cells) (536).

5.2 Molecular clocks: current state and challenges

At the moment, no consensus on methodology and clock as standard biomarker for human aging has emerged. For most of these biomarkers, the physiological and functional relevance are unclear, the predictive value for morbidity and mortality in humans is poor, there is

little overlap between different types of clocks, and even between clocks of the same type (508, 509, 537, 538). For example, in a recent study investigating the effect of long-term caloric restriction in healthy adults on DNA methylation, the DunedinPACE clock showed a slight reduction in “biological age” in the restricted group, while two other clocks (PhenAge and GrimAge) did not produce this effect (539). Significant deviations between technical replicates of the same samples can exist, in one study with a median and maximal deviation of 3 years and 8 years, respectively (540). Another study of 6 epigenetic clocks using the same samples resulted in deviations of up to 9 years (541). Moreover, epigenetic clocks differ between organs and cell types (542, 543), even between the same cell type depending on spatial location within a tissue (544). In fact, some tissues, for example skeletal muscle, are only poorly represented by epigenetic clocks (545). Then, time of sampling can affect the results, as many epigenetic clocks exhibit circadian oscillations (546). Furthermore, results obtained in model organisms might be misleading. For example, the naked mole rat is considered as a demographically non-aging animal, with exceptional longevity and almost complete absence of cancer and cardiovascular diseases. Nevertheless, this animal exhibits epigenetic aging (547). Such findings might indicate that many of the epigenetic events that are measured might not correlate with *bona fide* aging, but rather represent physiological and pathological consequences to different types of events. In fact, epigenetic clocks often result in overlapping outcomes when comparing old and cancer cells (509). Moreover, the transient modulation and subsequent regression of DNA methylation marks in pregnancy or infection might not be a sign of increasing and decreasing “biological age” (548), but a normal response to these types of stressors (549). Hence, it is essential that a biomarker is robust and not affected by acute physiological perturbations or by technical or pre-analytical variability. Thus, at the moment, all of these molecular clocks will have to be used with caution, awaiting validation in longitudinal human studies in large cohorts (550, 551).

Efforts to standardize the development and validation of such clocks are currently underway, and will be indispensable for breakthroughs in this area (507, 552). More specifically, different types of biomarker validation have been proposed that might help to improve the discovery and implementation of biomarkers (Box 1) (507, 552).

First, biomarkers are especially valuable when they originate from pathways that actively drive aging (biological validation), rather than simply being correlated with this process. Second, if a biomarker targets conserved pathways and is validated in multiple species (cross-species validation), it is more likely to be linked to the fundamental process of aging. Third, the predictive value of a biomarker for future age-related outcomes (predictive validation) in a prospective rather than retrospective study should be assessed. Fourth, the assessment/analysis of the biomarker should be standardized (analytical validation), including the collection, storage and analysis procedure of the sample to facilitate the determination of the sensitivity, specificity and reproducibility of the biomarker. Finally, it is important to establish the clinical value (clinical validation) of a biomarker in terms of improving our understanding of the disease or the potential effects of an intervention on health outcomes. Collectively, broad validation across these dimensions is instrumental to ensure that molecular biomarkers are robust, reproducible, and clinically meaningful, and can therefore be used to predict “biological age”, health outcomes in response to an intervention, the risk to develop diseases and mortality.

Furthermore, multi-omics approaches might help to improve such clocks (553), analogous to attempts in the field of muscle exercise biology (554). However, even with the current lack of a comprehensive understanding of the aging process, a multicomponent mechanism, with pleiotropic outcomes, affecting all cells, tissues and organs of the human body is more likely than a single pathway/molecule common to all somatic cells. Accordingly, until our knowledge improves, compound measures and indices that describe systemic, or at least multi-organ health, relevant for resilience and functional retention, might have the highest chance to monitor aging progression and provide feedback on potential interventions (discussed below). Nevertheless, it is conceivable that the study of these molecular clocks will help to better understand the mechanisms underpinning human aging. Moreover, the use of integrated or combination approaches, e.g. combining plasma proteome with human phenome data (555) or metabolome with genomic information (556), and the increasing use of machine learning of large datasets might help to improve the quality of these clocks (509, 531, 553, 557–559). Attempts at integrating physical fitness or other lifestyle-/behavior-related parameters in epigenetic clocks (560–562) however might be better served by measuring the real thing instead of a proxy of uncertain value. In fact, clinical “aging clocks”, based on anthropometric, (patho)physiological and molecular parameters have been proposed to predict healthy and unhealthy aging trajectories (563, 564). In any case, proven, physiological biomarkers of aging should be used to benchmark any new molecular biomarkers (565–568).

6 Physiological biomarkers of aging: ready for prime time!

As outlined above, physical activity remains one of the best interventions for human health and longevity. It thus is not surprising that the assessment of morphological, anthropometrical and functional parameters that describe the outcome of exercise training provides strong predictive power for health, morbidity and mortality. In fact, these physiological biomarkers of aging provide an assessment of functional aspects (569), relevant in everyday life, e.g. on fatigability, strength or gait speed, that affect daily tasks such as walking across a pedestrian crossing, moving up stairs, carrying groceries, having social interactions or being able to clean the apartment, thereby markedly impacting on quality of life and independence (570). Despite proven associations (507) and current indispensability as benchmarks in pre-clinical as well as endpoints in clinical trials (571), these parameters surprisingly often are underappreciated in contemporary discussions of biomarkers of aging. Thus, to increase the recognition of these measures, and to draw a direct comparison, the physiological biomarkers will be positioned in the proposed framework of aging biomarkers (Box 1, adapted from ref. 507) in this review. As outlined below, this will show that the physiological biomarkers of aging fulfill the requirements and challenges that have been put forward (552). Broadly, the physiological biomarkers of aging can be categorized in terms of cardiorespiratory fitness, muscle mass, muscle strength and power, leisure time activity, neuromuscular function and frailty. The most common parameters and tests will be described in more detail in the following sections. Of note, the deterioration of these tissues and organs, combined with neurodegeneration and a reduction in bone mass and mineral density, is universally observed, and thus could be considered true

“physiological hallmarks of aging”, with a clear and causal relationship to the decline in functional capacity, morbidity and mortality (Figure 4).

6.1 $\dot{V}O_{2\max}$ /cardiorespiratory fitness

6.1.1 $\dot{V}O_{2\max}$: principle and testing: At the moment, cardiorespiratory fitness is the most studied and best predictor of morbidity and all-cause as well as disease-related mortality (Figure 5A and B) (572–583). Cardiorespiratory fitness is assessed by measuring the maximal rate of oxygen consumption $\dot{V}O_{2\max}$. This concept has been introduced by Archibald Hill and Hartley Lupton in 1923 (584), and developed ever since (585, 586). $\dot{V}O_{2\max}$, sometimes also reported as $\dot{V}O_{2\text{peak}}$ (the highest recorded $\dot{V}O_2$ in tests failing to reach a $\dot{V}O_{2\max}$ plateau, therefore potentially underestimating the true maximum (587, 588)), is a readout obtained in cardiopulmonary exercise tests that correlates with cardiorespiratory fitness and endurance capacity (589–593). Most often, $\dot{V}O_{2\max}$, either reported as an absolute rate (mL/min) or normalized to body mass (mL/min/kg) (sometimes also normalized to lean body or skeletal muscle mass), is typically determined in graded maximal exercise tests by measuring ventilation and respiratory O₂ concentrations (reaching a plateau), often combined with determination of blood lactate concentrations (e.g. approaching or exceeding 10.0 mmol/L), heart rate (reaching a plateau), respiratory exchange ratio (1.1) and perceived exertion (e.g. 19–20 on the Borg scale from 6 to 20 or 9–10 on a Borg Category-Ratio 10 (CR10) scale from 1 to 10, even though variations between protocols for some of these thresholds exist (594–596). The results depend on the exercise modality: treadmills or cycle ergometers are commonly used, but $\dot{V}O_{2\max}$ values can be acquired in any exercise setting that is amenable to breath-based oxygen analysis, e.g. rowing ergometers, all of which involve different sets of muscles. The $\dot{V}O_{2\max}$ often differs between testing modalities, and prior task habituation: for example, runners might reach higher values on the treadmill, while cyclists or triathletes can excel on cycle ergometers (597). The choice of testing paradigm therefore depends on availability, practicality, intention for assessing task specificity, co-administration of other tests (for example electrocardiography might be easier on cycle ergometers due to minimal upper body movement) and other factors.

$\dot{V}O_{2\max}$ integrates functional aspects of a number of organs and tissues that contribute to oxygen intake, distribution, extraction and usage (Figure 5C) (598). Intake is affected by pulmonary capacity and function, in part depending on respiratory muscle functional capacity, which can be improved by specific training even in older adults (599). Distribution combines cardiac output parameters, oxygen carrying capacity by red blood cells, blood volume and vascular properties. Extraction and usage, at least in the case of cardiopulmonary exercise tests, is mainly determined by the degree of tissue vascularization (hence the proximity of blood vessels and muscle cells), intramyofibrillar trapping of oxygen by myoglobin, and the rates of mitochondrial oxidative phosphorylation. The rate limiting step that determines $\dot{V}O_{2\max}$ can be variable, and for example shift depending on the training state, from oxygen usage in muscle fibers in the untrained to oxygen provisioning by cardiac output and tissue vascularization in trained athletes.

6.1.2 $\dot{V}O_{2\max}$: age dependence and health/mortality prediction: $\dot{V}O_{2\max}$ decreases progressively with age, at a rate of about 7-10% per decade (corresponding to 4-4.6 mL/min/kg) (600–602), down to an “aerobic frailty threshold” of 17.5-18.0 mL/min/kg that is required for an independent lifestyle (574, 603, 604). At this point, individuals have to utilize almost their maximum aerobic capacity for tasks related to daily life and independence, associated with severe physical fatigability (605). In the worst case, this deterioration continues to fall below 10.5 mL/min/kg, when about 30% of oxygen is used to maintain basal metabolic rate, potentially leading to fatal outcomes (574, 603). Accordingly, the assessment of $\dot{V}O_{2\max}$ constitutes a strong and independent predictor of morbidity and mortality in different populations, young and old, healthy and clinical (574, 576, 606). In fact, this strong link with mortality and various chronic conditions including heart failure, hypertension, stroke, chronic kidney disease, dementia and depression was consistently demonstrated in an overview of meta-analyses that included more than 20.9 million observations (576). More specifically, having a low cardiorespiratory fitness is associated with a 41-53% higher relative risk for all-cause mortality compared to those with a high cardiorespiratory fitness (607). Strikingly, even in unfavorable conditions, such as abnormal glycemic status (608) or obesity, being fit is a strong predictor for reduced all-cause and cardiovascular disease mortality (609–612). In fact, relatively fit obese men (top 80% of the age-specific cardiorespiratory fitness) have a 50% lower cardiovascular disease mortality risk compared to normal-weight unfit men (lowest 20% of the age-specific cardiorespiratory fitness) (610). Indeed, cardiorespiratory fitness can mitigate risks of obesity in a significant manner, beyond those of unfit, normal-weight individuals (613). Similarly, high cardiovascular fitness can overcome an unfavorable genetic predisposition for dementia (614). Furthermore, cardiovascular fitness is a strong inverse predictor of heart failure risk irrespective of BMI (615). Importantly, even though up to 50% of the variability in $\dot{V}O_{2\max}$ in sedentary individuals is estimated to be of genetic origin (616) as well as other biological and methodological factors (617), trajectories can be strongly affected by exercise at young and old age (618–623), and even a moderate increase by 3.5 mL/min/kg (1 metabolic equivalent of task/MET), achievable after 2-3 months of training (603), reduces the risk of heart failure by 18% (572) and all-cause mortality by 11-17% (576, 607). Interestingly, despite exhibiting lower $\dot{V}O_{2\max}$ values, older athletes can reach high performance levels due to the ability to perform work closer to the $\dot{V}O_{2\max}$ compared to younger counterparts (624). Lifelong exercise habits provide most benefits to mitigate age-related declines in $\dot{V}O_{2\max}$ (625), and can confer benefits in old age (626). However, even in the very old, cardiorespiratory fitness can be improved, as exemplified in the case study of a 101-years-old cyclist (627).

6.1.3 $\dot{V}O_{2\max}$: Additional tests, benefits and alternative assessment methods:

A cardiopulmonary exercise test can provide additional health-relevant parameters, and can easily be expanded (589–592, 628). For example, this test often includes a measurement of the rate of carbon dioxide production ($\dot{V}CO_2$). The respiratory exchange ratio (RER, $\dot{V}CO_2$ divided by $\dot{V}O_2$) indicates fuel utilization, from oxidation of fatty acids (RER approx. 0.7) to glucose (RER=1.0). Thereby, the metabolic preference and transition during a cardiopulmonary exercise test can be assessed, and the switch to anaerobic metabolism

observed when the RER exceeds 1, sometimes used as exhaustion endpoint criterion. The RER, heart rate, minute ventilation $\dot{V}E$ (composed of the tidal volume multiplied by the breathing frequency), or work rate can be set into relationship to $\dot{V}O_2$ and $\dot{V}CO_2$, thereby providing insights into the relative efficiencies and potential deficiencies of the cardiopulmonary system, e.g. by calculating the ventilatory equivalents $VEqO_2$ and $VEqVCO_2$ (corresponding to the ventilation required to take up or exhale a given amount of O_2 and CO_2 , respectively, by dividing $\dot{V}E$ by $\dot{V}O_2$ or $\dot{V}CO_2$). Additional health-relevant parameters are obtained from simultaneous (and/or post-exercise) acquisitions of stress electrocardiograms (629, 630), blood pressure (631, 632), pulse oximetry or arterial blood gas measurements (633), cardiac magnetic resonance imaging (634), heart rate response and recovery (635–637), heart rate variability (638, 639), invasive cardiopulmonary hemodynamics with a pulmonary artery catheter in the internal jugular vein (640), or other parameters. Furthermore, timed blood sampling and determination of lactate levels help to pinpoint the lactate threshold, or, when combined with $\dot{V}CO_2$ measurement, the anaerobic threshold, even though this concept remains somewhat contentious (641, 642). Outside of clinical testing, $\dot{V}O_{2\max}$ correlates with endurance exercise capacity, but itself is only one of the key parameters besides fractional utilization of $\dot{V}O_{2\max}$ (related to the individual lactate threshold and critical power), exercise economy, and physiological resilience to determine performance (643–645). Optimally, all four are measured and optimized in athletic training. It is important to point out that many of the clinically used techniques, parameters and readouts have emerged from the study of elite athletes (646), who, even though few in numbers (647), represent the upper limit of human performance capabilities (296, 648). Of note, various protocols exist to estimate $\dot{V}O_{2\max}$ in other settings, including submaximal efforts, from maximal and resting heart rates, or based on the Fick equation with cardiac output and the arteriovenous oxygen difference as parameters, e.g. in health-compromised individuals. Therefore, readouts for cardiorespiratory fitness can also be acquired without measuring actual $\dot{V}O_{2\max}$ (649). For example, time on treadmill, peak speed, incline, work performed and other parameters have been used to assess cardiorespiratory fitness, showing good correlation with measured maximal oxygen uptake and with mortality risks (650–658). Other parameters such as sex, age, BMI, waist circumference, resting heart rate, physical activity levels, and smoking status can be used to approximate the state of cardiorespiratory fitness (659, 660). In fact, over 28 equations have been proposed, using overlapping and distinct metrics, all of which significantly correlate to measured cardiorespiratory fitness, albeit with differences in accuracy (661). Even though measured cardiorespiratory fitness provides better discriminative ability, estimated cardiorespiratory fitness is a valid indicator of health status and mortality risks (660, 662–664). For example, activity-induced oxygen uptake, expressed as MET (3.5 mL O_2 /min/kg), can be calculated with the heart rate index (the ratio of maximal to resting heart rate during and before an activity, respectively) (METs = (6*heart rate index)-5) (582, 665).

6.2 Relative lean/muscle mass

6.2.1 Body mass index and the obesity paradox: Historically, even though controversial (666), an “obesity paradox” has been reported, indicating reduced mortality of patients with an elevated BMI (expressed in kg body mass / m^2 height) beyond the normal/

healthy range (667). Different explanations have been put forward for this observation, for example based on data indicating that when using measures of fat depot distribution, the “obesity paradox” disappears (668). Since such measures are independent of differences in muscle mass, they support the muscle mass hypothesis, suggesting that only those patients for whom the elevation in BMI is to a significant extent caused by higher muscle mass, experience the health benefits, at least in certain pathologies and populations (667, 669–672). The BMI thus is an imperfect marker for obesity (673). Indeed, the relative amount of lean or, better, actual skeletal muscle mass (often normalized to body mass) is a much better predictor of all-cause and disease-specific mortality (674–685). Muscle mass is of particular significance in aging (sarcopenia) and cancer (cachexia), with strong correlations to functional capacity, quality of life, morbidity and survival (686–694).

6.2.2 Relative lean/muscle mass: methods: In contrast to the BMI, which can easily be measured using a scale and a measuring tape, determination of the vastly more meaningful body composition requires specialized equipment, with variances in precision and accuracy (695–705). Moreover, these methods have different capabilities in determining compartments such as adipose-tissue free mass (ATFM, body mass – adipose tissue mass), fat-free mass (FFM, residual mass (organs such as liver, pancreas etc) + fat-free skeletal muscle mass + bone mass), lean soft tissue (LST, residual mass (organs such as liver, pancreas etc) + fat-free skeletal muscle mass) or actual skeletal muscle mass, which contributes about 45%–50% to fat-free mass (706). Sometimes, compartments are normalized to other anthropometric measures, e.g. in the fat-free mass index (FFMI) that is indexed to height (expressed in kg FFM / m²). Commonly used methods to measure muscle mass or surrogates thereof include (707–711): Skin fold measurements with a measuring caliper, in which body composition is inferred from the thickness of subcutaneous fat in different body areas; circumference of various muscles such as mid-upper arm or calf; bioelectrical impedance analysis (BIA), recording the electrical resistance with multiple electrodes and in multi-frequency measurements in a body segment-separated manner; dual energy X-ray absorptiometry (DEXA), in which spectral imaging using two X-ray beams with different energy levels allows the acquisition of body composition data in total body and regional segments (including assessment of bone mass and mineral density); ultrasound, applied to multiple body regions similar to the skin fold calipers; quantitative magnetic resonance (QMR) or magnetic resonance imaging (MRI), in which magnetic fields are used to quantify, and in the case of MRI also visualize, fat and lean mass independent on hydration status; hydrostatic weighing or air displacement plethysmography, using object displacement of water and air, respectively, to calculate body density and subsequently composition; computed tomography (CT), in which multiple X-ray measurements are processed for a tomographic reconstruction of a body, sometimes combined with positron emission tomography (PET) to assess metabolic activity such as glucose metabolism. Finally, in deuterated creatine dilution, skeletal muscle mass is determined non-invasively since almost 98% of the creatine pool is found in muscle, co-localizing with sarcomeric structures, which are the functional components of muscle (712–714). Therefore, skeletal muscle mass measured by this method strongly correlates with strength, functional capacity and mortality risks (715, 716). As in all areas of medical diagnosis (717), the use of machine learning techniques and artificial intelligence might help to improve the predictive

strength of imaging-based techniques for body composition in the future (718). Moreover, improvements and/or the acquisition of additional parameters will further boost the use. For example, the phase angle (PA, angular transformation of the ratio of capacitance (Xc) to resistance (R) - arc tangent $(Xc/R) * 180^\circ/\pi$) measured at 50 Hz in BIA is an indicator of cell health and function, and correlates with disease risk and mortality (719–721). However, as with most of these methods, better standardization and more normative data for different instruments and populations will help to improve this measure (722–724).

6.2.2 Relative lean/muscle mass: adipose tissue content and distribution: Of note, costly bespoke determinations can sometimes be circumvented by leveraging other, already existing radiological images, e.g. to estimate temporalis muscle thickness in cranial imaging as a marker for muscle mass predictive of disability and mortality (725). As an added benefit of some of these methods, information on adipose tissue distribution (e.g. abdominal vs. subcutaneous), or even fat content of different organs (726) (including myosteatosis (727) or intermuscular adipose tissue (728)) is acquired, both of which are linked to pathological processes in cardio-metabolic diseases (729), all-cause and cause-specific mortality (730). For example, the determination of the adipose-free muscle volume and the percentage of intramuscular fat in the thigh muscle by MRI can be compared to reference values and provides predictive data on health (731), or, at least in certain populations, on brain volume (732). Adipose distribution however can also be estimated by the much cheaper and simpler waist-to-hip circumference ratio, with good correlation to morbidity and mortality risks (733), which can develop in different trajectories compared to the BMI (734). Other parameters that should improve on the use of BMI have been proposed, including the Weight-adjusted Waist circumference Index (WWI, calculated by dividing waist circumference by the square root of body mass) (735, 736), the Body Roundness Index (BRI, calculated as $364.2 - 365.5 \times (1 - [\text{waist circumference in centimeters} / 2\pi]^2 / [0.5 \times \text{height in centimeters}]^2)$) (737), or height-normalized abdominal body composition (738). The combination of muscle strength reduction and fat mass gain, as observed in sarcopenic obesity, might constitute an additional burden on health and mortality (739, 740), for example for the risk of dementia (741). Regardless of the method used, it is undisputed that strong associations of body composition with aging and health exist (742, 743), e.g. in terms of risk for frailty in sarcopenic obese and pre-sarcopenic individuals (744), in health and pathologies, for example non-alcoholic fatty liver disease (NAFLD) patients (745, 746). Notably, the genetic contribution to muscle mass and function are estimated at 30%-50%, implying a majority of the variations to be modifiable by environmental factors (747). Nevertheless, despite the recent arrival of new anti-obesity drugs, the rising rates in overweight and obesity are observed world-wide, accompanied by the corresponding obesity-related pathologies, necessitating effective and aggressive measures targeting environmental and lifestyle factors (748).

6.3 Muscle strength and power

6.3.1 Muscle force trumps mass: In recent years, it has become clear that an exclusive focus on muscle mass is insufficient to describe sarcopenia (muscle wasting in the aging process) and other diseases (749). In fact, the term dynapenia (or powerpenia) has been proposed to describe the functional loss of skeletal muscle, which can be dissociated

from changes in body or muscle mass (750–753). In aging, the loss in power is greater than in strength, and both are disproportionately larger than the reduction of muscle mass (754–756). Chronologically, the decline in power, strength and mass is accordingly found in this order (756). It therefore is no surprise that the decrease in muscle quality, a measure of strength or functionality relative to muscle mass, strongly correlates with mortality and health in aging (757–759). As a consequence, therapies that only ameliorate muscle mass, but not functional aspects, will most likely be suboptimal (760–762). Indeed, muscle strength (maximal force, expressed in N, sometimes reported as torque expressed in Nm to describe force application for rotational movement of a joint) (763–771) and power (scalar product of the vectors of force and shortening/lengthening velocity of the muscle (772, 773), revealing force production over time or speed of force production, expressed in Watt) (774–776) have been closely associated in an inverse manner with all-cause mortality (678, 751, 777–781) not only in healthy individuals, but also patients such as those suffering from diabetes (782).

6.3.2 Methods to determine muscle strength and power: hand grip and

more: The determination of handgrip strength with corresponding dynamometers is one of the most common methods, facilitated by the ease of use, and the availability of ample normative data (Figure 6), for which values are often expressed in relation to body height and mass, handedness and other anthropometric measures, with strong correlation with future morbidity and mortality (783–792) as well as potentially a number of sociodemographic, anthropometric behavioral and psychological factors (793).

Intriguingly, handgrip strength has predictive power for processes beyond muscle status, e.g. extending to frailty (794), glycemic measures (795), hypertension (796), brain (791, 797) and cardiovascular health (798), bone mineral density in women (799), or self-assessed quality of life (800), and associates with a wide variety of anthropometric, morphological and functional factors (801), or the risk for falls (802). The values obtained with hand grip dynamometers can be approximated with simple tests such as polyethylene terephthalate (PET) bottle opening or newspaper tear-off in old populations, albeit in the absence of broad, normative datasets (803). However, the measurement of a single strength component might be insufficient to capture more complex or different tasks, for example those related to activities that involve both upper and lower body functions (804, 805). Therefore, specialized, mostly isokinetic dynamometric equipment is used to measure the strength or power of single joint movements (e.g. knee extension), or multi-joint and -muscle involvement such as acquired with mechanographical force/power plates in plyometric exercises. Furthermore, standard isotonic gym equipment can be leveraged to assess parameters such as the one-repetition maximum (1RM), maximum voluntary isometric contraction (MVIC), muscular endurance (isometric or velocity loss with increasing number of repetitions), dynamic strength index (bar velocity related to force production), reactive strength index (RSI, divide drop jump height by ground contact time) and others. In a frail population, sit-to-stand tests (for example timing of 5 repetitions of sit-to-stand-to-sit movements without the use of arms and hands, or number of sit-to-stand repetitions in a 30 s window) or similar interventions might already be sufficient to estimate strength of the trunk and lower extremities. These measurements can be combined with electromyography (EMG)

to obtain additional information on neuronal activation, action potential transmission, motor unit recruitment and fatigue (806, 807). Moreover, clinical relevance can be expanded by the utilization of tensiomyography (speed of muscle contraction under isometric conditions) and myotonometry (measurement of reaction to a short mechanical impulse), providing data on muscle composition, architecture and viscoelastic properties (e.g. muscle tone, stiffness and elasticity), respectively (808). Such approaches might be complemented and expanded with wearable super-resolution myographic sensors in the future (809). Of note, integrated approaches, for example assessment of muscle mass and strength, potentially combined with other parameters such as a nutritional score, might increase the predictive power, e.g. for cancer mortality (810).

6.4 Step count, leisure time physical activity and sedentary behavior

6.4.1 Occupational and leisure-time physical activity in the modern world:

The evolution of humankind as persistent hunters is not reflected in the engagement in physical activity in modern societies, with various detrimental consequences on health (264, 296). The amount of physical activity is profoundly different between professions, which can result in beneficial outcomes, e.g. the lower incidence of coronary heart disease in conductors, constantly climbing and descending stairs, compared to the sedentary drivers of double-decker buses in London (811–814). Overall, ~80% of jobs in the USA are estimated to be predominantly sedentary (815).

Discrepancies also exist for non-occupational leisure time activity and a big proportion of the general population do not meet the current WHO guidelines recommending at least 150–300 min of moderate aerobic activity and regular muscle-strengthening exercises (816–821). For example, only 22.8% out of 2'629'508 adults adhering to muscle-strengthening exercise guidelines (822), or less than 52%, 35% and 28% of the general USA population met endurance, resistance, and combined endurance and resistance training recommendations, respectively, in the year 2018 (823). Reaching the activity levels defined by these guidelines confers substantial health benefits and lowers mortality risks (824–827), e.g. up to 31% on all-cause mortality in elderly individuals (828), independent of cardiorespiratory fitness (829, 830). Importantly, even relatively small shifts towards physical activity behavior can elicit beneficial effects (831), which can extend to non-muscle tissues and functions, e.g. cognition in acutely hospitalized older adults (832) or cancer (833). In fact, all aspects of resilience (834) and intrinsic capacity (835, 836), comprising locomotor (837), cognitive (838), psychological, sensory, and vitality capacity (839), are positively affected by physical activity (840). However, while positive outcomes are already seen at lower doses, additional value can be achieved with higher intensity/volume/frequency (841), albeit with diminishing returns (842–844). Inversely, a negative association of leisure-time, non-occupational physical activity to morbidity as well as mortality has been demonstrated (845–857). For example, a strong correlation between leisure-time physical activity and the risk for a number of cancers has been found in large cohorts (858–861), with a potential involvement of the exercise-remodeled immune system in this context (862). Importantly, the impact of physical activity is seen regardless of the time-of-day of performance (863), indicating that activity can mitigate potential adverse effects of circadian timing (864). Similarly, physical activity can overcome other markers of low functionality,

e.g. ameliorating mortality risks in individuals with low handgrip strength, or preventing cardiovascular disease incident across all handgrip strength levels (865).

Of note, sedentary behavior (as in time sitting), which is on the rise in many societies, should be independently assessed from other forms of inactivity, due to the marked negative effects of time sitting on health and disease risk that can be distinct from those arising from minimal physical activity (866–869). Accordingly, sedentary behavior can increase mortality risks, e.g. those for all-cause and cardiovascular diseases (870–874), which at least in part can be blunted by physical activity, in particular when performed at high intensity (875–881).

6.4.2 Methods to measure leisure-time physical activity: from step count to more sophisticated wearables: Leisure-time physical activity and sedentary behavior data are often collected by self-reporting, with the corresponding limitations on data accuracy and standardization. More recently, advances in the use of wearable devices have helped to acquire such behavioral data in a more objective and quantifiable manner, and have confirmed the positive effect of physical activity on mortality risks (866, 881–885). Daily step count is the simplest parameter for which a good association with morbidity and mortality has been demonstrated (886–895), e.g. on incident risk of dementia (896) or of depression (897). More sophisticated accelerometers however allow a detailed and fine-grained acquisition of different types of activity (or sedentary behavior) in relationship to health and mortality (866, 898–900). For example, the personalized activity intelligence score assesses the cumulative fluctuations of heart rate of the most recent 7 days as a measure of relative intensity and energy expenditure of weekly physical activity, shown correlate with mortality risks (901, 902). Such refined manners of acquisition of behaviors are of particular importance to quantify time sitting (903). At the moment, wearables-based assessment of physical activity is widely deployed to capture endurance training-type of activities, using actigraphy, accelerometry, GPS tracking and heart rate measurements besides other sensors, even though issues with heterogeneity, accuracy and standardization still exist (904). However, strong health and mortality benefits also arise from resistance training (905–921), even at lower intensities/volumes (922), for which corresponding wearables that objectively and accurately quantify the work performed and actual (non-resting) exercise time are still under development (923). In fact, muscle strength and cardiovascular fitness are independent predictors of mortality, with best outcomes when performed in combination (924–927).

6.5 Gait speed/frailty parameters

6.5.1 Neurodegeneration and sarcopenia are the major drivers of loss-of-independence, morbidity and mortality: In the absence of any debilitating disease, neurodegeneration (928, 929) and sarcopenia (257, 930–933) are two of the main factors that precipitate loss-of-independence, decreased quality of life, morbidity and mortality in aging (934). The effects caused by these two processes are exacerbated by compromised cardiovascular function (935–938) and loss of bone mass and mineral density (939). Osteopenia/osteoporosis is a prominent issue in postmenopausal women (940), but should not be overlooked in men (941). Of note, bone mineral density correlates with lean

body mass and muscle strength (747), and can be improved by exercise, in particular in combination with the intake of dairy products (942). Similarly, neurodegeneration and sarcopenia (and inversely physical activity) are mutually linked (943, 944), e.g. in the reduction in vestibular and proprioceptive abilities, leading to altered gait, and decreased senses of balance and motor coordination. With the progressive loss of the functional capacity caused by these events, a vicious cycle is initiated and fueled (945), in which insecurities in gait and balance reduce the drive for physical activity (and social interactions), which, in turn, accelerates neuronal and muscle degeneration (Figure 7). In the worst case, falls occur (946), with the risk of fractures, immobilization and hospitalization, further promoting this cycle through a “catabolic crisis” (947–950), ultimately culminating in a broad hospital-associated deconditioning (951) and hospital-acquired complications (952).

6.5.2 Gait speed and other tests for frailty and neuromuscular functionality:

Based on the deterioration of the neuromuscular system, it is of little surprise that functional capacity parameters depending on neuromuscular functionality are predictors of an independent lifestyle, morbidity and mortality, as seen in the example of gait speed (283, 953–961). Gait speed, representing voluntary locomotion, can easily be assessed with a stopwatch, pedometers, or accelerometers (962). Additional information can be derived from a more sophisticated analysis of gait, in which for example speed, cadence, stride length, step width and other parameters describing footprint and gait dynamics are acquired, and collectively allow a more comprehensive assessment of aging-related alterations in gait (963, 964). Such data can be obtained with different methods, including pressure measurements, motion capture or wearable sensors (965). Gait speed trials often are combined with other tests of frailty, for example cognitive and sensory function, psychological and social aspects, balance and motor coordination, mobility and flexibility, muscle strength and endurance, muscle and body mass loss, fatigability/exhaustion, and integrated tasks of gross and fine motor skills (966–969). Such compound frailty assessments are predictive of mortality, as well as incident disability, falls, hospitalization and health care-dependence (970–973), even in long-term trajectories (974). For example, strength, balance and gait speed can be used to predict the risk of incident dementia (967, 975). However, even simple tests such as sit-to-stand time (976), sit and rise from the floor (977), or 10-second one-legged stance performance (978) can be used to estimate frailty, functional capacity, mortality and survival. Stair descendance phenotypes can reveal deficits in balance, coordination, muscular agility and strength, and thereby help to predict the risk of incident falls (979). A myriad of test batteries and protocols have been established, aiming for a test coverage of a broad and representative range of frailty, impinging on vulnerability to adverse events, reduced resilience towards stressors, and loss of functional capacity (956, 970, 971, 980), all of which clearly associate with the process of (advanced) aging (981, 982).

7 Classification of biomarkers of aging

The aforementioned physiological parameters belong to a group of biomarkers of aging, some of which, e.g. the 6 min walk test, have already been accepted by the FDA as surrogate in clinical trials (571). In terms of application, physiological biomarkers fulfill the

Europe PMC Funders Author Manuscripts

Europe PMC Funders Author Manuscripts

criteria of multiple categories (507). 1.) Predictive biomarkers: the physiological biomarkers have a strong and independent predictive power for all-cause mortality, and various disease-specific risks. 2.) Prognostic biomarkers: for most of the functional/physiological biomarkers, predictive power is not only limited to healthy individuals, but extends to patients in very diverse settings, for example as a measure for fitness for and outcome of surgery (983–988), clinical outcomes in heart failure (989), coronary bypass grafting (990), intensive care unit hospitalization (991, 992), frailty (971, 993–996), cancer mortality (997, 998), sarcopenia (999), biliary sepsis (1000), liver transplantation (1001), hospitalization secondary to COVID-19 or other infectious diseases (1002), potentially linked to reduced respiratory function (1003), or cognitive impairment and dementia (1004). Notably, the corresponding interventions, in particular exercise training, can be used in a prognostic manner in prehabilitation to mitigate loss of muscle mass and function, increase resilience, reduce adverse outcomes and shorten the duration of hospital stays (1005). 3.) Response biomarkers: the physiological biomarkers not only predict morbidity and mortality, but also react to interventions that improve prospects, first and foremost physical activity, the most robust intervention known to date to promote healthy aging. 4.) Surrogate endpoints markers: due to the extraordinary correlation between physiological biomarkers, biological age, morbidity and mortality, interventions aimed at the aging process should be benchmarked against these measures, whenever possible in a comprehensive manner. For example, weight loss caused by caloric restriction is not expected to change absolute $\dot{V}O_{2\max}$, even though oxygen consumption normalized to body mass can increase, or could lead to a reduction in lean body mass if performed in the absence of concomitant resistance training (1006, 1007). However, leisure-time activity, number of steps as well as gait speed and other frailty markers could improve, at least based on extrapolation of data from mice. 5.) Discovery biomarkers: physiological biomarkers describe the integrated function of various tissues, organs and cell types, and thus reflect the multifactorial processes and complexity of aging. However, the underlying mechanistic principles are still poorly understood, and therefore harbor an enormous potential to reveal novel insights into the benefits of interventions that improve these biomarkers, as well as the patho-etiology of aging-linked processes.

7.1 Assessment of biomarkers of aging

Four main criteria for ideal biomarkers of aging have been put forward (507). The physiological biomarkers, in particular in combination, fulfill all of these. 1.) Measurement: the assessment of all of the physiological biomarkers is minimally invasive, and, maybe with the exception of self-reporting-based values, highly reliable. Therefore, longitudinal assessment, life-long, from young to very old age, is feasible. 2.) Aging relevance: the physiological biomarkers not only predict morbidity and mortality, but also provide a snapshot on functional capacity, resilience and (organ) health. 3.) Predictive power for functional aspects of aging: this is clearly provided by the physiological biomarkers, extending to practical and tangible aspects in daily life, e.g. impaired gait speed resulting in the inability to cross roads (1008). 4.) Responsiveness to longevity interventions: all of the physiological biomarkers are pliable, thus, responsive to interventions, in particular those with most benefits on the aging process (1009).

7.1.1 Feasibility and validity: The determination of physiological biomarkers, including $\dot{V}O_{2\max}$, muscle mass and strength/power, gait speed, locomotor activity and frailty are minimally invasive, and non-lethal in model organisms, at least in higher vertebrates. A longitudinal assessment therefore is possible, even desirable to monitor trajectories over time, facilitated by the short time and ease of acquisition. Importantly, these measurements are non-age-accelerating – in fact, the tests, at least in some cases like $\dot{V}O_{2\max}$, muscle strength/power, or gait speed represent the intervention, and therefore contribute to the beneficial effects. Then, physiological biomarkers are age-sensitive, with high correlation with chronological age. However, in contrast to other molecular biomarkers for which accuracy for chronological age seems to come at the expense of predictive power for mortality and age-associated health outcomes, physiological biomarkers have been demonstrated repeatedly to provide very accurate prediction of morbidity and mortality, and possibly “biological age” (Figure 8).

Importantly, in contrast to most contemporary molecular biomarkers, extensive epidemiological, prospective, longitudinal and cross-sectional data in humans exist for the physiological biomarkers in that regard. Thus, age-sensitive criteria are fulfilled: good prediction of all-cause mortality, as well as correlation with multiple age-sensitive features, i.e. age-associated morbidities, by providing information about functional aspects of multiple systems, integrating different signals, and incorporating heterogeneous aspects. Two types of information are provided: integrity and resilience of tissue/organ function, as well as, in the case of longitudinal assessment, rates of progression of deterioration (or mitigation/reversion by interventions).

7.1.2 Mechanistic criteria and biologic plausibility: In the absence of confounding age-associated diseases, inevitable neurodegeneration, sarcopenia, and functional decline in the cardiovascular system are the main drivers for elderly individuals to lose independence, being admitted to nursing homes, and experience increased morbidity and mortality (1010). Collectively, these processes promote an inactive lifestyle due to increased perception of effort, insecurities (e.g. related to a decline in balance and motor coordination), leading to a vicious, self-reinforcing cycle. In the worst case, elderly individuals fall, and the ensuing fracture, facilitated by osteopenia/osteoporosis (in osteosarcopenia) (1011), potentially exacerbated by osteoarthritis (in musculoskeletal failure) (1012), leads to immobilization and hospitalization. Inversely, an active lifestyle, in particular when enriched by endurance, resistance, balance/agility and flexibility training (1013), is the best, indeed so far only intervention to mitigate sarcopenia and neurodegeneration (1014), and one of the best to counteract osteopenia/osteoporosis and boost cardiovascular function. In fact, endurance, strength and flexibility training have all been shown to improve mortality risks (1015, 1016). Fall risks are reduced by strength and balance training affecting posture, gait and coordination, resistance training improving sarcopenia and joint mobility, and cognitive exercises boosting spatial awareness and attention (1017). Thus, a clear anti-aging effect has been demonstrated, impinging on various deleterious processes that affect health- and lifespan.

The aforementioned physiological biomarkers exhibit a well-described deterioration with “biological age”, e.g. in terms of muscle mass and strength, cardiorespiratory function, gait speed or frailty. While the latter are primarily affected in old age, the former exhibit an association starting at younger ages. Thus, even though the pathways and molecular underpinnings of, and the potential health-benefits elicited by interventions aimed at these biomarkers are still only poorly understood, a strong biologic plausibility exists that links functional resilience of the cardiorespiratory and neuromuscular systems to aging, morbidity and mortality, and most likely impinge on fundamental aspects of aging. Of note, the effects of the interventions that are directly related to these biomarkers transcend health and function of the primary target tissues. Thus, exercise-based interventions not only improve muscle and cardiovascular function, but affect almost every organ and system in the human body in a clinically relevant manner (297, 303, 1018, 1019). For example, muscle mass and strength, as well as the amount of physical activity are negatively associated with the relative risk for dementia and a decline in cognitive function, brain structure, neurodegeneration and mental health (1004, 1020–1031), even when performed in an irregular manner, e.g. in “weekend warriors” (943, 1027, 1032–1034). Such activity patterns, concentrated at one or two days per week, also confer health benefits in other domains, for example cardiovascular disease incident rates (1035). More regular exercise-based interventions obviously also mitigate these risks (1036), potentially even changing life-long trajectories if initiated early in life (380, 1004, 1037–1039). Such youth-specific programs could affect life history and thereby influence health aging (1040, 1041).

7.1.3 Generalizability: Most of the proposed physiological biomarkers can be assessed in model organisms, and at least some show a remarkable similarity to humans, e.g. pliability of $\dot{V}O_{2\max}$ (1042), association of $\dot{V}O_{2\max}$ with longevity (1043), or deterioration of balance and gait in mice, amenable to amelioration by exercise (1044), if certain biological and methodological issues are considered (97, 1045). Thus, these biomarkers can be studied mechanistically in multiple species, with a high translatable potential (1046). In humans, importantly, these biomarkers have been validated in different clinical populations and demographics (573, 792, 889, 1047), even across different age groups (573, 774, 1048). For example, cardiorespiratory fitness in youth predicts age-associated diseases at old age, e.g. for site-specific cancer (1049). Similarly, mid-life grip strength correlates with functional capacity and resilience at old age (1048), or youth sport participation with sarcopenia (1050). Furthermore, these parameters, and the corresponding interventions, are equally valid from the youngest (1051) to the oldest of the old (767, 954, 955, 1052–1062), as exemplified by a case study of a 71-years-old world champion powerlifter who started resistance exercise at the age of 63 years (1063), or a late bloomer octogenarian triathlete (1064). Of note, benefits are found even in suboptimal conditions, e.g. obesity (609, 1065), Alzheimer’s disease (1066), schizophrenia (1067), poor sleep (352, 1068, 1069), hospitalization (1070), rheumatoid arthritis (1071), hypertension (1072–1074), pulmonary hypertension (1075, 1076), heart failure (1077) and cardiac rehabilitation (1078), chronic obstructive pulmonary disorder (COPD) (1079–1081), diabetes (1082), chronic kidney disease (1083, 1084), depression (1085, 1086), or even multimorbidity (1087). At the moment, very few pathological context contraindicate the use of physical activity, for example as hotly debated in myalgic encephalomyelitis/chronic fatigue syndrome (ME/

CFS), in which patients can experience a post-exertional malaise lasting for several days (1088). Nevertheless, physical activity levels are directly correlated with all-cause mortality even in individuals with other risk factors, such as cigarette smoking or early parental death (1089, 1090). Inversely, physiological biomarkers can be uncoupled from the genetic background, and accordingly are pliable even between monozygotic twins (1091–1094). Moreover, consensus is emerging that absolute non-responders to physical activity do not exist, inasmuch such individuals might respond to different training paradigms, intensities or volume, or might have been misclassified as non-responders due to measurement and other technical errors (296, 1095–1099). This extreme clinical generalizability is different from many of the proposed pre-clinical interventions aimed at life- and/or healthspan extension, many of which only work in specific mouse strains (e.g. caloric restriction (212)), sex (e.g. the majority of pharmacological approaches (129)), or experimental conditions (e.g. pharmacological approaches (38, 476) or caloric restriction (83, 208–210, 219)).

At a glance, some of the existing data on physiological biomarkers seem counterintuitive and suffering from similar drawbacks: for example, even though women have markedly lower $\dot{V}O_{2\max}$ (Figure 5B) or grip strength (Figure 6) than men, the former outlive the latter in most societies in terms of average and maximal life expectancy (1100). Surprisingly, opposite to this improved survival, frailty is more common in women than men, suggesting a sex-based frailty-mortality (or health-survival) paradox (1101–1106). Biological differences certainly contribute to these observations, e.g. in terms of immune system function or the prevalence of life-threatening vs. non-life-threatening chronic conditions (1107). Similarly, considerable sex-based differences in the exercise response and performance exist (1108). However, psychosocial, societal, socioeconomic (1109) and educational factors should not be neglected, for example sex differences in the number of doctor visits, inclusion in clinical trials, risk aversion, or engagement in healthy nutritional and other lifestyle behaviors. Indeed, at least in some countries, the survival gap between women and men is narrowing (1110), potentially driven by behavioral changes, socioeconomic factors and education (1111). Curiously, women also derive greater benefits from equivalent doses of leisure-time physical activity than men, at least in terms of reduction of mortality (1112). Even though this interesting phenomenon still is only rudimentarily understood at the moment, it is important to note that physiological biomarkers predict mortality not only in sex-separated, but also in mixed groups. In the future, this predictive power might be further elevated by leveraging group-stratified data or individualized trajectories, making use of a combination of physiological biomarkers that integrate aspects of health, resilience and deterioration representative of different organs and systems. At the same time, a more personalized approach, based on sex amongst other factors, in determining functional aspects, health and well-being, coupled to the design of early and late preventative as well as therapeutic measures, seems necessary.

7.1.4 Response criteria: The physiological biomarkers of aging reflect accelerated and decelerated aging inasmuch they accurately predict morbidity and mortality. More importantly, the interventions aimed at these biomarkers, physical activity and exercise, are powerful geroprotectors (37, 38, 264, 925, 1018, 1113).

7.1.5 Cost considerations: Most molecular biomarkers and clocks rely on invasive sample acquisition, specialized equipment, prohibitive costs, and extensive data analysis, precluding population-wide application, at least at the moment. In contrast, the measurement of most physiological biomarkers is easy and relatively cheap, e.g. to measure step count, grip strength, sit-to-stand tasks or gait speed. For others, most expense will arise from the initial investments for the acquisition of the corresponding instruments (e.g. gas analyzers for the determination of $\dot{V}O_{2\max}$, and dual energy X-ray absorptiometry (DEXA), bioelectrical impedance analysis (BIA), magnetic resonance imaging (MRI) or computed tomography (CT) instruments for the determination of (segmental) body composition, lean and muscle mass, respectively). Importantly, these instruments can be re-used, even re-purposed for additional applications, and require minimal continuing investment. Indeed, large-scale, longitudinal imaging programs with MRI, DEXA and carotid ultrasound have been successfully initiated with 30'000-100'000 of participants (1114, 1115). The notion of cardiorespiratory fitness tests being unduly demanding in resources and costs pales in light of the tremendous significance on predicting health and mortality risks, and strongly favors a broad and routine implementation of such tests in clinical practice (1116-1118). Thus, in general, physiological biomarkers can be cost-effectively collected in large cohorts and longitudinal studies. Moreover, some parameters can even be determined with self-monitoring, e.g. daily steps, gait speed, or sit-to-stand time.

7.1.6 Invasiveness and safety: In general, the physiological biomarkers can be measured in a low-risk, non-invasive manner. The determination of cardiorespiratory fitness via $\dot{V}O_{2\max}$ is the only biomarkers that necessitates higher intensities and could thus be more problematic in some cohorts. Standardized guidelines for the determination of cardiorespiratory fitness have been established to implement testing in the clinical setting (1119-1123). Adequate safety measures should be considered, e.g. pre-participation health screening, and the concomitant acquisition of electrocardiographic data and/or blood pressure (1124-1129). Such measurements provide additional clinical insights into cardiovascular health and potentially masked hypertension. Notably, $\dot{V}O_{2\max}$ can also be estimated in submaximal tests (1125, 1130).

Cautionary findings have also been reported for exercise-based interventions, in particular at very high intensities (581, 582, 1131). For example, a U-shaped association between exercise intensity and the occurrence of atrial fibrillation has been reported (1132, 1133), however diametrically opposed to the clear negative correlation of the risk for atrial fibrillation with cardiorespiratory fitness levels (1134, 1135). A potential “exercise toxicity” could also be inferred from reversed J-type (or U-shaped) mortality curves in other studies, with an increase of the relative risks at very high intensities (1136-1138). Of note, the confidence intervals for these specific groups are large, due to the low number of participants training at such intensities, and the relative risk still is markedly below that of sedentary individuals (1136). Besides atrial fibrillation, excessive endurance training has also been linked to a higher occurrence of arterial plaques and myocardial fibrosis (1139), even though the association with intensity (1140) or volume (1141) seems complicated (1142), and associations are not seen consistently across studies (1143). For example, a reduction in plaques was seen in an exclusive female Master endurance athlete cohort

(1144). At the moment, it is not clear whether these changes indeed are pathological, if they are induced by other factors and risk behaviors (e.g. former smoking habits), or represent non-conventional pathophysiology (e.g. calcified vs. non-calcified plaques, and/or stabilization of plaques). Indeed, follow-up studies of endurance athletes with increased pathophysiological symptoms revealed no increase in all-cause or cardiovascular mortality (1139), regardless of coronary artery calcification load (1145) or elevated genetic risk for cardiovascular diseases (1146).

In contrast to these cautionary findings, no upper threshold for the mortality benefit of cardiorespiratory fitness was found up to very high levels (573, 600, 1147, 1148). In fact, structural analysis revealed no cardiac changes beyond the normal range, even in individuals with very high engagement in physical activity (1149). Indeed, many studies report “L”-type mortality curves, with no added benefit, but also no drawbacks of very high intensity exercise (1065, 1150). Thus, at some point, increased training load might have a very small additional impact on health parameters (1151, 1152), but, based on most available data, should also not confer pathological outcomes on the cohort level (926, 1153, 1154), even though individuals with unfavorable genetic predisposition and/or morphological, anatomical or functional abnormalities might be at higher risk (1155). As a case in point, even athletes with enormous training loads, e.g. participants of Olympic Games, the Tour de France, the first sub-4 minutes per mile male runners or other former athletes, have better morbidity and mortality scores compared to the general population, or even their non-competing siblings (296, 1156–1170). This is irrespective of country of origin, medal or type of sport (1171), and to a large extent driven by improved cardiovascular and cancer mortality (1157, 1172, 1173). In fact, even epigenetic aging seems decelerated in Olympic champions compared to non-champions, with hypo-methylation of genes involves in synaptic health, glycosylation, metal ion transfer and force generation, as well as hyper-methylation of genes associated with cancer promotion (1174). Obviously, none of these effects can be completely dissociated from a selection bias based on other health beneficial habits that could distinguish this group from their non-elite athlete peers (1175, 1176). However, improved survival is also found in non-elite athletes, e.g. in a study of 546'876 participants of Dutch running, cycling and walking events that has revealed that even in the short term (7 days), no increase in mortality odds were observed, while a 30% lower risk of death ensued in a 3.3 year follow-up (1177). Benefits most likely persist and could confer life-long health advantages, e.g. as reported in the case study of a 77-year-old former world-record-holding marathoner (1178). Importantly, low incidence rates of cardiac arrest were also reported during long-distance events including half-marathon (0.27 per 100'000 participants), marathon (1.01 per 100'000) (1179) or triathlon (1.74 per 100'000) (1180). Indeed, the estimated rates of sudden cardiac death in athletes that range from 1:40'000 to 1:300'000 are much lower than those observed in the general population at 1:2'000 (97, 1181).

In summary, in the absence of adverse pathologies, exercise is an extremely safe intervention, with proven benefits, and thus should be broadly recommended (97), even in old (1182), frail or otherwise pathological cohorts when certain measures are taken, for example people with heart failure (581, 582, 1183, 1184). Thus, appropriate pre-participation screening, design and monitoring of training programs as well as clinical

follow-up of vulnerable populations, including the aforementioned potential cardiovascular events associated with high-intensity/volume endurance exercise in veteran athletes, should help to prevent and mitigate any adverse outcomes (581, 582, 1185–1192). Thus, for most people, the risks and potential adverse effects of physical activity are dwarfed by the benefits (1188). Importantly, such benefits can even arise from small efforts (1193–1198) such as walking (1199–1202) or non-exercise-related activities in daily life (1203), and can be long-lasting when following appropriate protocols, e.g. up to 4 years in volunteers of retirement age undergoing resistance training (1204). The overall accumulation of time of physical activity seems more important than individual bout lengths (1205–1207), at least when performed at moderate to vigorous intensity (1208). Notably however, additional effects can be achieved by higher engagement, e.g. in structured high-intensity interval training (HIIT) compared to moderate intensity continuous training (MICT), or unstructured activity that meet the national guidelines (1209).

7.2 Validation of biomarkers of aging

7.2.1 Analytical validation: Most physiological biomarkers are quantifiable and easy to measure using well-established methods for data acquisition and interpretation, and their assessment is accurate, reliable, repeatable and reproducible, e.g. $\dot{V}O_{2\max}$, muscle mass, strength/power or step count. They circumvent issues of many molecular biomarkers in terms of signal-to-noise in the differentiation of positive and negative results. Similarly, drawbacks in invasive sample acquisition, preparation, storage, and assay do not exist. However, some of the physiological biomarkers can rely on self-reporting and questionnaires, for example the amount of leisure-time activity, or individual assessment of fatigue and well-being in frailty scores. Importantly, with the increasing use of wearable sensors, these drawbacks might be overcome in the future, providing more quantitative, accurate and reproducible data on these parameters (296, 1210, 1211). For example, physical activity can be precisely measured with accelerometers, and correlation with health benefits has been demonstrated (1203, 1212–1214). Machine learning-based methods can help in the interpretation, and activity- or risk-recognition can be based on the wearables data (1215). In fact, the use of wearables extends to the improvement of adherence and compliance to physical activity interventions, with clear, long-term clinical benefits (1212, 1216). Bluetooth low energy sensors, or similar techniques, could extend the usability to the tracking of indoor location and even social interactions (1217). Obviously, issues of validity, reliability, accuracy, reproducibility, standardization, transparency in used algorithms, data privacy, usage and ownership will have to be resolved before deployment of such instruments (1218). If successful, such applications would further increase the objective quantitation of physiological biomarkers (1219–1221).

7.2.2 Clinical validation: In contrast to most molecular biomarkers, physiological biomarkers have an extended history of clinical validation regarding morbidity and mortality as predictive, prognostic and response biomarkers in various cohorts and populations. Moreover, at least some of these parameters help in clinical decision making in different patient populations, e.g. in the prediction of postoperative outcomes (983, 997, 1222). In fact, clinical exercise testing, in particular cardiorespiratory fitness measurements, have been promoted as key tests to stratify patient risk profiles, and encourage healthy lifestyle choices

(1121). Moreover, the higher the adoption of standardized tests, e.g. for cardiopulmonary exercise testing (1223), the better normative reference values for different ethnicities, sexes, age groups, healthy vs. clinical populations, and other demographic parameters will be obtained (1224–1232). To achieve such ambitious goals, national and global registries and multicenter databases for cardiorespiratory fitness values with sufficient representation of various populations, from pediatric to geriatric, have been proposed, including normative as well as criterion-based standards (1233, 1234). Similar datasets should be acquired for the other physiological biomarkers of health and aging. A number of the proposed physiological biomarkers have already been used in longitudinal aging studies such as the English Longitudinal Study of Ageing (ELSA), Health and Retirement Study (HRS) or Longitudinal Aging Study Amsterdam (LASA). For example, reduced function of lower extremities assessed by gait speed and balance is associated with a two to three times higher risk of incident dementia over 15 years (975). Furthermore, an improvement in one score in the Short Physical Performance Battery (SPPB), evaluating gait speed, balance and repeated sit-to-stand, is associated with 8% lower odds of falling over a 14-year period together with a lower risk for other mobility impairments (1235). Similarly, one score increase in the physical performance test (including a walking, sit-to-stand and balance test) or the gain in one kg handgrip strength reduces the 6-years fracture risk in men by ~10% and ~5%, respectively (1236).

7.2.3 Translation of biomarkers: For many molecular biomarkers, translation to a clinical setting is hampered by several challenges, of which six key barriers have recently proposed (135). Here, the current position of the physiological biomarkers is discussed in this framework. *1. Data sharing for development and validation.* Open and free access to publication and data is a problem that is not unique to the field of biomarkers of aging, but extends to all of scientific research. It thus is as imperative for the physiological as it is for the molecular biomarkers of aging that the FAIR (findable, accessible, interoperable and reusable) principles are followed. For some biomarkers, e.g. cardiorespiratory fitness, such attempts currently are ongoing (1119). *2. Relative importance of criteria.* Even though evaluation criteria for biomarkers of aging have been proposed (507), the relative importance of these is unclear, and arguments for and against can be formulated. For example, as first of the eight criteria discussed (135), the correlation of a biomarker with chronological age is important, but, if too rigid, might not be modifiable by geroprotectors or other factors that affect age trajectories. Of note, physiological biomarkers exhibit both, change with chronological age as well as pliability. Second, strong predictive power of all-cause mortality exists, while, at the same time, specific risks for sub- and various clinical populations have been found. Third, some of the tests, e.g. gait speed and other frailty assessments, predict functional capacity primarily in older individuals. Others however, e.g. $\dot{V}O_{2\max}$, are also applicable and valid in younger subpopulations. Fourth, the risk for many age-related diseases can be assessed from physiological biomarkers, and in many cases, direct causality proposed, for example linking suboptimal cardiorespiratory fitness to cardiovascular pathologies. Fifth, the physiological biomarkers reflect causal aspects of aging, represented by the universal decline in muscle, neuronal and bone tissue mass and function. Sixth, the response to factors that accelerate aging, or, better, increase the risk of morbidities and mortality, is given, at least for those with a clear effect such as a

sedentary lifestyle (306). Seventh, inversely, the proven geroprotectors, e.g. physical activity, have likewise a positive effect on physiological biomarkers. Finally, the physiological biomarkers have been tested and validated in large and diverse populations. *3. Age range for application.* With the exception of frailty markers mainly relevant in geriatric populations, physiological biomarkers can be assessed and longitudinally monitored starting at young age, and help to reveal healthy or unhealthy trajectories that are central for the aging process. Importantly, the determination of these factors is safe and non-invasive. *4. Minimal criteria for clinical use and implementation.* As the physiological biomarkers are already used in clinical practice, such criteria have been met. *5. Positioning of biomarkers of aging in the current disease-specific healthcare setting.* Physiological biomarkers are being used for patient stratification, treatment monitoring, disease prevention or targeted interventions, thus providing clear actionable insights. *6. Connecting biomarkers of aging with actionable insights in healthcare and preventative settings.* Physiological biomarkers are excellent measures for individual health monitoring. However, only some are easily implementable on an individual level that does not require access to specialized equipment and facilities. A subset such as step counters and other wearables can be, and are, already widely used, with meaningful outcomes for health and mortality.

In summary, the physiological biomarkers of aging have already overcome most of the challenges that are faced by new molecular biomarkers for clinical translation. Nevertheless, further improvements are still desirable, including open science principles, or accessible and affordable infrastructure for the longitudinal monitoring of large populations.

8 Challenges and perspectives

The validity of physiological biomarkers to predict morbidity and mortality in the human aging process is well-established. Similarly, the effects of exercise as geroprotector, and as highly efficacious intervention for the prevention and treatment of many pathologies, most of which are chronic and age-associated in nature, are undisputed, as is the acceptance of a sedentary lifestyle as strong and independent risk factor for many different diseases (264, 303, 306). It therefore is mysterious why this knowledge is not leveraged to a greater extent in predicting health, the aging process, morbidity and mortality in pre-clinical and human studies. As outlined, the determination of these parameters is non-invasive, non-age accelerating, easy, precise and reproducible, in particular with improvements based on wearables data. Moreover, even a wide-spread screening of large cohorts is relatively cost-efficient once initial investments in instruments have been done.

8.1 A potential action plan for health monitoring in from young to old

A comprehensive, longitudinal assessment of health and aging trajectories would optimally be done in a systematic, multicomponent manner (Figure 9A).

Currently, such biomarker assessments have to be stratified by the strength of clinical evidence. Thus, first and foremost, the physiological biomarkers, as discussed in Section 6, would provide the basis of screening at the current time. The validity might however be further amplified by expanding such screenings with other indices of health and comorbidities (1187, 1188), including blood biomarkers for disease risk (1189–1191) and

composite markers for different domains, e.g. endocrine and immune function or cognitive and physical functional capacity (1192). An integration of the physiological biomarkers with the determination of other attributes of functional capacity (1237) (cognition, psychology, hearing, vision and vitality/nutrition), e.g. used in the WHO Integrated Care for Older People (ICOPE) program to assess intrinsic functional capacity (1238–1240), reproduced in the INSPIRE animal cohort, could further boost the predictive power and reflect the multidimensional aspects of aging, functional capacity and resilience (980). Similarly, additional tests of (micro)vascular health, e.g. assessed non-invasively in the retina, could complement $\dot{V}O_{2\max}$ data on cardiovascular health and function (1241), maybe combined with other retinal features (1242, 1243). Moreover, wearable-based acquisition of sleep-related parameters (342, 1244), and app-based inventory of nutrition (1245) would cover other important aspects related to the aging process, even provide compositional insights, e.g. on sleep and activity (1246). Improvements in acquisition of such data, in particular in regards to nutrition, would have to be made, since self-reporting, as in other areas, is of limited reliability (335, 336, 1247). At the moment, disease risk and outbreak is mostly monitored with general health screenings, even though the corresponding benefits often are questionable (382). Along the same lines, pharmacological interventions such as broad administration of polypills, and some wearables data, for example those claiming to predict atrial fibrillation (1248) and continuous glucose monitoring in non-diabetic patients (1249, 1250), will have to be rigorously tested since clinical use of these in healthy individuals and in aging is still under debate. Little to no data currently exists for proposed pharmacological and interventional “anti-aging” strategies as discussed in Sections 2 and 3, as well as the molecular biomarkers of aging. Nevertheless, once positive steps to clinical validation in humans have been achieved, these could also be included in a health screening. Finally, other molecular, morphological and functional screening tools might be considered and tested in the future, e.g. aimed at estimating immune system function, intestinal or other microbiomes, or blood and urinary biomarkers (1251).

Optimally, a personalized health pass based on such data would be initiated at young age, and updated in a longitudinal manner throughout life (Figure 9B). Thereby, favorable or unfavorable trajectories could be identified (573, 1049, 1050, 1252, 1253) and appropriate measures initiated in early stages of deterioration. Moreover, the impact of detrimental events, e.g. hospitalization, as well as the benefits of interventions could be quantified. Finally, personalized diagnosis, e.g. of sarcopenia, could overcome prevailing issues with cross-sectional and population data (1254), and might enable early detection and initiation of preventative measures on the individual and/or community levels (1255). Thus, a better integration of these physiological biomarkers in fundamental aging studies in model organisms and humans, population-wide health screening and clinical trials is one challenge to overcome, even though hurdles to do so are low (1256).

8.2 How can the adoption of a healthy lifestyle be increased?

A much larger challenge than the implementation of many of these biomarkers and screenings is the poor compliance and adherence of many people to life style-based interventions despite the obvious health benefits (1257, 1258). In this section, physical activity will be used as an example, but analogous conclusions and recommendations could

also be made for the better adaptation of other factors discussed in Section 3. Certainly, various reasons contribute to differences in active and sedentary behavior, including socio-economic aspects, availability of time, access to facilities, or fatigue (296). However, to a significant extent, human (and murine) activity behavior is controlled by innate, genetic factors (1259). Therefore, vague recommendations to increase leisure-time activity, or to simply overcome lack of willpower, often fall short, even in patient populations with high risks and clear benefit of exercise (1260). In recent years, factors that decisively contribute to adherence and compliance have been studied and quantified (1261–1267), helping to overcome the intention-behavior gap (1268, 1269). Even the WHO initiated the “Global Action Plan on Physical Activity 2018–2030” with the vision of “more active people for a healthier world”, aiming for a 15% relative reduction in the global prevalence of physical inactivity by 2030 (1270). In many regards, promoting physical activity (and other behaviors with health benefits) can be attributed to four levels (1264, 1271–1273): Political framework, health care systems, health care professionals and individuals (Figure 10).

1.) Political framework: for example, the reduction of individualized, motorized vehicles, which is strongly linked to sedentary behavior and unhealthy lifestyles (1274–1277), in favor of biking, walking, or public transportation and other infrastructural aspects (e.g. central, easily accessible, and attractive staircases instead of elevators and escalators, parks and recreational areas, urban/jungle gyms, walking/running tracks) promotes an active lifestyle. These efforts also include expanding walking and cycling networks and improving pedestrian and cyclist safety (1270). Notably, walkability confers clear benefits on physical activity behavior in healthy individuals (1278) and cancer survivors (1279). Additionally, fostering an active society can involve offering free activities in parks and public open spaces or the temporary/permanent closure of roads to motorized vehicles to facilitate activities such as cycling, inline skating, and walking (1270). Other interventions include reducing adverse behaviors such as usage of tobacco, alcohol or sugar-sweetened beverages and other unhealthy food and drinks through taxation, and the reduction/elimination of subsidies for fossil fuels (to curb anthropomorphic climate change and promote more active ways of mobility), all of which will liberate funds for the promotion of healthy lifestyles (233). The conversion of Paris with the Plan Vélo 2021–2026 shows the feasibility even in large metropolitan areas, provided the political will and financial investments. As a side-effect, other potentially detrimental factors on healthy aging, e.g. air pollution, noise emissions or insufficient sun exposure, would also be mitigated by such infrastructural changes. Importantly, research and surveillance of healthy lifestyle habits and interventions should be promoted, as should public awareness.

2.) Health care systems: a shift of the emphasis from treatment, care and rehabilitation to prevention (primary and secondary) should be promoted (Figure 11).

Financial relief, e.g. on health care costs, certainly belong to the strongest incentives. Moreover, the establishment of science-based, individualized, structured and guided exercise programs, including aspects of behavior change and habit formation, would ensure the highest adherence and compliance (1261, 1262, 1268, 1280, 1281). This could be facilitated if general practitioners were able to issue physical activity or lifestyle prescriptions for

inactive individuals, covered by the health insurance. In most countries, this is usually only possible for individuals with existing physical impairments, thus in rehabilitation or secondary prevention, rather than for primary prevention in those who are still healthy but inactive. The prevailing reactive health care system, focused on treatment and rehabilitation, leads to high costs, and patient relapse (Figure 11A). Programs for secondary prevention that go beyond rehabilitation often do not exist, but would help to minimize relapse by aiming at achieving functional capacity levels that surpass those that initially contributed to an incident or disease in these patients (Figure 11B). Optimally, proactive programs would be established for the primary prevention in healthy individuals to reach a level of functional capacity and resilience that minimize such incidents before they even occur (Figure 11C).

3.) Health care professionals: it is clear that a general recommendation of “being more active and eat a balanced diet” are insufficient (1282). Therefore, personalized physical activity or lifestyle counselling should be accessible for individuals with an unhealthy lifestyle, tailored for different populations such as geriatric individuals (1283, 1284). The recognition of the importance of physical activity is very divergent amongst health care professionals. For example, there is a large variation in exercise prescription by physicians depending on their own physical activity level (1282). In fact, physically active physicians provide almost twice as many daily physical activity consultations compared to their inactive colleagues. One of the major barriers for primary care physicians to prescribe physical activity to patients include a lack of education. Accordingly, medical curricula should much more strongly emphasize the importance of physical activity, which in many diseases is on par with pharmacological and other interventions (303). This should help health care professionals to incorporate routine fitness testing and exercise interventions in the clinic, and guide patients towards structured programs (1285).

4.) Individuals: the education about the strong benefits of an active lifestyle has to be massively expanded, starting at young age, notably in an accessible and understandable manner to minimize misunderstanding and misinformation (1286). Often, such aspects are the first to be removed from already overloaded school curricula. Moreover, extracurricular activities, such as walk- or cycle-to-school programs, should also be strengthened, including the integration of road safety education (1270). Second, social safety nets, which reduce the work time of socio-economically disadvantaged cohorts, would lessen time pressure and fatigue, and increase motivation to engage in exercise (1287, 1288). The goal of the educational measures on different levels should be clear guidance for the design and application of personalized, evidence-based, safe and efficacious training paradigms (1289, 1290), nutrition (1291), and other interventions.

8.3 Who is going to pay for this?

Obviously, any of these measures are associated with considerable financial investments, at least in the short-term, which might dampen the enthusiasm for such political and societal initiatives, e.g. in politicians who think in 2, 4, or 6 years election cycles. It however is important to point out that in the long run, better public health will yield enormous savings, even in the context of an aging population (233). For example, various studies estimate an average saving of USD 3 to 4 for each dollar invested in measures that promote

physical activity alone (1292, 1293). Each increase in one metabolic equivalent (MET) in cardiorespiratory function leads to an individual annual reduction in health care costs between USD 1025 and 5193 in different populations (thus approx. 5-10% of total costs) (1294, 1295), a decrease in all-cause sickness absence days (1296), improved work ability, and less doctor and hospital visits (1118). Further return of investment can be expected from other changes, e.g. healthy diet (1297), for example by lowering the annual costs of GBP 2.68 billion caused by unhealthy food in the UK (1298), cycling infrastructure (1299), or adequate sleep (1300). In Canada, the economic burden of low cardiorespiratory fitness is estimated at CAD 3.6 billion, with savings of CAD 644 million per year with a 10% reduction in the prevalence of low cardiorespiratory fitness (1301), and similar numbers for low muscle strength (CAD 3 billion total costs and CAD 546 million savings with 10% improvement) (1302). Along these lines, a reduction in the incidents of fatal and non-fatal falls would save costs in the millions, if not billions of USD even only within the United States (1303). Finally, risk factors such as elevated BMI or waist circumference significantly drive health care costs, for example, by 15.4% more with an increase in waist circumference by 10 cm (1304). Thus, while finding a true “anti-aging” drug or intervention could mean a lot of money to be gained (for a handful of individuals or companies), engaging in proven lifestyle- and behavior-associated interventions with certainty leads to a lot of money saved (for a society).

8.4 Conclusion and outlook

All of these arguments should not be taken as a vote against current research into molecular clocks, epigenetic reprogramming and rejuvenation, and other cutting-edge topics in aging research. Hopefully, future insights in these fields will synergize with those obtained in research areas focused on the basic biology of the physiological biomarkers, and together, provide mechanistic and causal data on healthy and unhealthy aging. Moreover, potential age-reversal-age-extension (ARAE) paradoxical effects between pharmacological geroprotectors and lifestyle interventions, e.g. the attenuating effect of metformin, resveratrol or rapamycin on training adaptation (37, 38, 476, 1305), could be overcome with a better understanding of the respective systems. Importantly, assessment and leverage of the physiological biomarkers (1306), the knowledge of proven drivers of unhealthy aging and of interventions promoting healthy aging are available now, and could (should!) be applied immediately in an effort that would benefit all to attain a healthier, longer and happier life (1307) (“a high tide lifts all boats”), instead of waiting for potential future breakthroughs, many of which might only be accessible to a handful of millionaires. Indeed, a three-round Delphi study recently came to the overwhelming conclusion that the physiological biomarkers are currently by far the best tools to monitor and assess interventional studies aimed at aging and longevity (1308). Until other biomarkers and interventions, e.g. those based on molecular criteria, reach the same level of maturity, it thus is important that, despite the heightened interest and the massive influx of money for basic research, biotechnological and clinical application, with the hope of immense return of investment (1309), hype of premature, preliminary and not yet reproduced results should be avoided to temper inflated expectations in scientists, funders, the media and the lay public alike (1310).

Acknowledgments

We thank our colleagues from our research group for constructive feedback and input. The figures were created with [BioRender.com](https://biorender.com) (all figures and graphical abstract) and Adobe Stock Photos (Figure 10 and graphical abstract).

Funding sources

Our research group is supported by the Swiss National Science Foundation (CRSII5_209252), the Biozentrum and the University of Basel.

References

1. Jeune B. Living longer--but better?. *Aging Clin Exp Res.* 2002; 14: 72–93. [PubMed: 12092789]
2. Gurven M, Kaplan H. Longevity among hunter-gatherers: A cross-cultural examination. *Population and Development Review.* 2007; 33: 321–365.
3. Vaupel JW. Biodemography of human ageing. *Nature.* 2010; 464: 536–542. DOI: 10.1038/nature08984 [PubMed: 20336136]
4. Dong X, Milholland B, Vijg J. Evidence for a limit to human lifespan. *Nature.* 2016; 538: 257–259. DOI: 10.1038/nature19793 [PubMed: 27706136]
5. Modig K, Andersson T, Vaupel J, Rau R, Ahlbom A. How long do centenarians survive? Life expectancy and maximum lifespan. *J Intern Med.* 2017; 282: 156–163. [PubMed: 28470872]
6. Christensen K, Doblhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. *Lancet.* 2009; 374: 1196–1208. DOI: 10.1016/S0140-6736(09)61460-4 [PubMed: 19801098]
7. Eisenstein M. Does the human lifespan have a limit?. *Nature.* 2022; 601: S2–S4. [PubMed: 35046588]
8. Rozing MP, Kirkwood TBL, Westendorp RGJ. Is there evidence for a limit to human lifespan?. *Nature.* 2017; 546: E11–E12. [PubMed: 28658235]
9. Lenart A, Vaupel JW. Questionable evidence for a limit to human lifespan. *Nature.* 2017; 546: E13–E14. [PubMed: 28658239]
10. Barbi E, Laguna F, Marsili M, Vaupel JW, Wachter KW. The plateau of human mortality: Demography of longevity pioneers. *Science.* 2018; 360: 1459–1461. DOI: 10.1126/science.aat3119 [PubMed: 29954979]
11. Olshansky SJ, Carnes BA. Inconvenient Truths About Human Longevity. *J Gerontol A Biol Sci Med Sci.* 2019; 74: S7–S12. [PubMed: 31001621]
12. Gbari S, Poulaire M, Denuit M. Extreme Value Analysis of Mortality at the Oldest Ages: A Case Study Based on Individual Ages at Death. *North American Actuarial Journal.* 2017; 21: 397–416.
13. Einmahl JJ, Einmahl JJJ, de Haan L. Limits to Human Life Span Through Extreme Value Theory. *Journal of the American Statistical Association.* 2019; 114: 1075–1080.
14. Levine HJ. Rest heart rate and life expectancy. *J Am Coll Cardiol.* 1997; 30: 1104–1106. [PubMed: 9316546]
15. Yun MH. Salamander Insights Into Ageing and Rejuvenation. *Front Cell Dev Biol.* 2021; 9 689062 doi: 10.3389/fcell.2021.689062 [PubMed: 34164403]
16. Szekely P, Korem Y, Moran U, Mayo A, Alon U. The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space. *PLoS Comput Biol.* 2015; 11 e1004524 doi: 10.1371/journal.pcbi.1004524 [PubMed: 26465336]
17. Herculano-Houzel S. Longevity and sexual maturity vary across species with number of cortical neurons, and humans are no exception. *J Comp Neurol.* 2019; 527: 1689–1705. [PubMed: 30350858]
18. Yuan R, Hascup E, Hascup K, Bartke A. Relationships among Development, Growth, Body Size, Reproduction, Aging, and Longevity - Trade-Offs and Pace-Of-Life. *Biochemistry (Mosc).* 2023; 88: 1692–1703. DOI: 10.1134/S0006297923110020 [PubMed: 38105191]
19. Crofts SJC, Latorre-Crespo E, Chandra T. DNA methylation rates scale with maximum lifespan across mammals. *Nat Aging.* 2024; 4: 27–32. DOI: 10.1038/s43587-023-00535-6 [PubMed: 38049585]

20. Li CZ, Haghani A, Yan Q, Lu AT, Zhang J, Fei Z, Ernst J, Yang XW, Gladyshev VN, Robeck TR, Chavez AS, et al. Epigenetic predictors of species maximum life span and other life-history traits in mammals. *Sci Adv.* 2024; 10 eadm7273 doi: 10.1126/sciadv.adm7273 [PubMed: 38848365]
21. Marck A, Antero J, Berthelot G, Sauliere G, Jancovici JM, Masson-Delmotte V, Boeuf G, Spedding M, Le Bourg E, Toussaint JF. Are We Reaching the Limits of *Homo sapiens*? *Front Physiol.* 2017; 8: 812. doi: 10.3389/fphys.2017.00812 [PubMed: 29123486]
22. Adam D. Life expectancy rise in rich countries slows down: why discovery took 30 years to prove. *Nature.* 2024. [PubMed: 39375557]
23. Milholland B. Jeanne Calment, Actuarial Paradoxography and the Limit to Human Lifespan. *Rejuvenation Res.* 2020; 23: 17–18. [PubMed: 31578937]
24. Olshansky SJ, Willcox BJ, Demetrius L, Beltran-Sanchez H. Implausibility of radical life extension in humans in the twenty-first century. *Nat Aging.* 2024; 4: 1635–1642. DOI: 10.1038/s43587-024-00702-3 [PubMed: 39375565]
25. Beard JR, Hanewald K, Si Y, Amuthavalli Thiagarajan J, Moreno-Agostino D. Cohort trends in intrinsic capacity in England and China. *Nat Aging.* 2024; doi: 10.1038/s43587-024-00741-w [PubMed: 39702725]
26. Editor. Seventy really may be the new sixty for English baby boomers. *Nat Aging.* 2025. [PubMed: 39753894]
27. Garmany A, Terzic A. Global Healthspan-Lifespan Gaps Among 183 World Health Organization Member States. *JAMA Netw Open.* 2024; 7 e2450241 doi: 10.1001/jamanetworkopen.2024.50241 [PubMed: 39661386]
28. Webster AJ, Clarke R. Sporadic, late-onset, and multistage diseases. *PNAS Nexus.* 2022; 1 pgac095 doi: 10.1093/pnasnexus/pgac095 [PubMed: 35899071]
29. Jones CH, Dolsten M. Healthcare on the brink: navigating the challenges of an aging society in the United States. *NPJ Aging.* 2024; 10: 22. doi: 10.1038/s41514-024-00148-2 [PubMed: 38582901]
30. Komp-Leukkunen K, Sarasma J. Social Sustainability in Aging Populations: A Systematic Literature Review. *Gerontologist.* 2024; 64 doi: 10.1093/geront/gnad097 [PubMed: 37526564]
31. Jarzebski MP, Elmquist T, Gasparatos A, Fukushi K, Eckersten S, Haase D, Goodness J, Khoshkar S, Saito O, Takeuchi K, Theorell T, et al. Ageing and population shrinking: implications for sustainability in the urban century. *npj Urban Sustainability.* 2021; 1
32. (WHO) WHO. Ageing and health World Health Organization (WHO). 2025. 16.01.2025 <https://www.who.int/news-room/fact-sheets/detail/ageing-and-health>
33. Bloom DE, Zucker LM. Aging Is the Real Population Bomb International Monetary Fund (IMF). 2025.
34. Poganik JR, Gladyshev VN. We need to shift the focus of aging research to aging itself. *Proc Natl Acad Sci U S A.* 2023; 120 e2307449120 doi: 10.1073/pnas.2307449120 [PubMed: 37682890]
35. Meyer DH, Schumacher B. Aging clocks based on accumulating stochastic variation. *Nat Aging.* 2024; 4: 871–885. DOI: 10.1038/s43587-024-00619-x [PubMed: 38724736]
36. Ikram MA. The use and misuse of ‘biological aging’ in health research. *Nat Med.* 2024; 30 3045 [PubMed: 39375458]
37. Furrer R, Handschin C. Lifestyle vs. pharmacological interventions for healthy aging. *Aging (Albany NY).* 2020; 12: 5–7. DOI: 10.18632/aging.102741 [PubMed: 31937689]
38. Furrer R, Handschin C. Drugs, clocks and exercise in ageing: hype and hope, fact and fiction. *J Physiol.* 2023; 601: 2057–2068. DOI: 10.1111/JP282887 [PubMed: 36114675]
39. Johnson AA, Shokhirev MN. Contextualizing aging clocks and properly describing biological age. *Aging Cell.* 2024; 23 e14377 doi: 10.1111/ace.14377 [PubMed: 39392224]
40. Gladyshev VN, Anderson B, Barlit H, Barre B, Beck S, Behrouz B, Belsky DW, Chaix A, Chamoli M, Chen BH, Cheng K, et al. Disagreement on foundational principles of biological aging. *PNAS Nexus.* 2024; 3 pga499 doi: 10.1093/pnasnexus/pga499 [PubMed: 39660064]
41. Kaeberlein M. How healthy is the healthspan concept?. *Geroscience.* 2018; 40: 361–364. DOI: 10.1007/s11357-018-0036-9 [PubMed: 30084059]
42. Schramme T. Health as Complete Well-Being: The WHO Definition and Beyond. *Public Health Ethics.* 2023; 16: 210–218. DOI: 10.1093/phe/phad017 [PubMed: 38333767]

43. Assembly UNG. Decade of Healthy Aging: The Platform United Nations General Assembly. 2025. 03.01.2025 <https://www.decadeofhealthyaging.org/>
44. Organization WH. WHO's work on the UN Decade of Healthy Ageing (2021–2030). World Health Organization; 2025. 03.01.2025 <https://www.who.int/initiatives/decade-of-healthy-ageing>
45. Pamplona R, Jove M, Gomez J, Barja G. Programmed versus non-programmed evolution of aging. What is the evidence?. *Exp Gerontol.* 2023; 175 112162 [PubMed: 37004927]
46. Hawkes K. The Centrality of Ancestral Grandmothering in Human Evolution. *Integr Comp Biol.* 2020; 60: 765–781. [PubMed: 32386309]
47. Hawkes K. Human longevity: the grandmother effect. *Nature.* 2004; 428: 128–129. [PubMed: 15014476]
48. Lahdenpera M, Mar KU, Lummaa V. Reproductive cessation and post-reproductive lifespan in Asian elephants and pre-industrial humans. *Front Zool.* 2014; 11: 54. doi: 10.1186/s12983-014-0054-0 [PubMed: 25183990]
49. Ellis S, Franks DW, Nielsen MLK, Weiss MN, Croft DP. The evolution of menopause in toothed whales. *Nature.* 2024; 627: 579–585. DOI: 10.1038/s41586-024-07159-9 [PubMed: 38480878]
50. Wood BM, Negrey JD, Brown JL, Deschner T, Thompson ME, Gunter S, Mitani JC, Watts DP, Langergraber KE. Demographic and hormonal evidence for menopause in wild chimpanzees. *Science.* 2023; 382 eadd5473 doi: 10.1126/science.add5473 [PubMed: 37883540]
51. Winkler I, Goncalves A. Do mammals have menopause?. *Cell.* 2023; 186: 4729–4733. [PubMed: 37890455]
52. Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. *Physiol Rev.* 2023; 103: 2171–2229. DOI: 10.1152/physrev.00040.2021 [PubMed: 36603157]
53. Coles LS. Demographics of human supercentenarians and the implications for longevity medicine. *Ann N Y Acad Sci.* 2004; 1019: 490–495. [PubMed: 15247072]
54. Perls T. Centenarian Statistics. 2025. 10.01.2025 <https://www.bumc.bu.edu/centenarian/statistics/>
55. Melzer D, Pilling LC, Ferrucci L. The genetics of human ageing. *Nat Rev Genet.* 2020; 21: 88–101. DOI: 10.1038/s41576-019-0183-6 [PubMed: 31690828]
56. Donlon TA, Morris BJ, Masaki KH, Chen R, Davy PMC, Kallianpur KJ, Nakagawa K, Owens JB, Willcox DC, Allsopp RC, Willcox BJ. FOXO3, a Resilience Gene: Impact on Lifespan, Healthspan, and Deathspan. *J Gerontol A Biol Sci Med Sci.* 2022; 77: 1479–1484. DOI: 10.1093/gerona/glac132 [PubMed: 35960854]
57. Zhang Y, Murata S, Schmidt-Mende K, Ebeling M, Modig K. Do people reach 100 by surviving, delaying, or avoiding diseases? A life course comparison of centenarians and non-centenarians from the same birth cohorts. *Geroscience.* 2024. [PubMed: 39212787]
58. Marston HR, Niles-Yokum K, Silva PA. A Commentary on Blue Zones((R)): A Critical Review of Age-Friendly Environments in the 21st Century and Beyond. *Int J Environ Res Public Health.* 2021; 18 doi: 10.3390/ijerph18020837 [PubMed: 33478140]
59. Poulain M, Pes GM, Grasland C, Carru C, Ferrucci L, Baggio G, Franceschi C, Deiana L. Identification of a geographic area characterized by extreme longevity in the Sardinia island: the AKEA study. *Exp Gerontol.* 2004; 39: 1423–1429. [PubMed: 15489066]
60. Chiang CWK, Marcus JH, Sidore C, Biddanda A, Al-Asadi H, Zoledziewska M, Pitzalis M, Busonero F, Maschio A, Pistis G, Steri M, et al. Genomic history of the Sardinian population. *Nat Genet.* 2018; 50: 1426–1434. DOI: 10.1038/s41588-018-0215-8 [PubMed: 30224645]
61. Pistis G, Piras I, Pirastu N, Persico I, Sassu A, Picciau A, Prodi D, Fraumene C, Mocci E, Manias MT, Atzeni R, et al. High differentiation among eight villages in a secluded area of Sardinia revealed by genome-wide high density SNPs analysis. *PLoS One.* 2009; 4 e4654 doi: 10.1371/journal.pone.0004654 [PubMed: 19247500]
62. Ungvari Z, Fazekas-Pongor V, Csiszar A, Kunutsor SK. The multifaceted benefits of walking for healthy aging: from Blue Zones to molecular mechanisms. *Geroscience.* 2023; 45: 3211–3239. DOI: 10.1007/s11357-023-00873-8 [PubMed: 37495893]
63. Pes GM, Dore MP, Tsolouli F, Poulain M. Diet and longevity in the Blue Zones: A set- and-forget issue?. *Maturitas.* 2022; 164: 31–37. [PubMed: 35780634]

64. Rosero-Bixby L. The vanishing advantage of longevity in Nicoya, Costa Rica: A cohort shift. *Demographic Research*. 2023; 49: 723–736.

65. Hokama T, Binns C. Declining longevity advantage and low birthweight in Okinawa. *Asia Pac J Public Health*. 2008; 20 Suppl: 95–101. [PubMed: 19533867]

66. Le Bourg E. Dietary restriction studies in humans: focusing on obesity, forgetting longevity. *Gerontology*. 2012; 58: 126–128. [PubMed: 21701153]

67. Gavrilova NS, Gavrilov LA. Comments on dietary restriction, Okinawa diet and longevity. *Gerontology*. 2012; 58: 221–223. doi: 10.1159/000329894 [PubMed: 21893946]

68. Poulain M. Exceptional longevity in Okinawa: A plea for in-depth validation. *Demographic Research*. 2011; 25: 245–284.

69. Newman SJ. Supercentenarian and remarkable age records exhibit patterns indicative of clerical errors and pension fraud. *bioRxiv*. 2024. 704080

70. Young RD, Desjardins B, McLaughlin K, Poulain M, Perls TT. Typologies of extreme longevity myths. *Curr Gerontol Geriatr Res*. 2010; 2010 423087 doi: 10.1155/2010/423087 [PubMed: 21461047]

71. Newman SJ. The global pattern of centenarians highlights deep problems in demography. *medRxiv*. 2024; 09

72. Amigo I. Shades of blue. *Science*. 2024; 386: 840–845. [PubMed: 39571034]

73. Coppede F. Mutations Involved in Premature-Ageing Syndromes. *Appl Clin Genet*. 2021; 14: 279–295. DOI: 10.2147/TACG.S273525 [PubMed: 34103969]

74. Austad SN. Methusaleh's Zoo: how nature provides us with clues for extending human health span. *J Comp Pathol*. 2010; 142 (Suppl 1) S10–21. DOI: 10.1016/j.jcpa.2009.10.024 [PubMed: 19962715]

75. Herskind AM, McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. *Hum Genet*. 1996; 97: 319–323. [PubMed: 8786073]

76. Ruby JG, Wright KM, Rand KA, Kermany A, Noto K, Curtis D, Varner N, Garrigan D, Slinkov D, Dorfman I, Granka JM, et al. Estimates of the Heritability of Human Longevity Are Substantially Inflated due to Assortative Mating. *Genetics*. 2018; 210: 1109–1124. DOI: 10.1534/genetics.118.301613 [PubMed: 30401766]

77. Gubbi S, Schwartz E, Crandall J, Verghese J, Holtzer R, Atzmon G, Braunstein R, Barzilai N, Milman S. Effect of Exceptional Parental Longevity and Lifestyle Factors on Prevalence of Cardiovascular Disease in Offspring. *Am J Cardiol*. 2017; 120: 2170–2175. DOI: 10.1016/j.amjcard.2017.08.040 [PubMed: 29050682]

78. Rajpathak SN, Liu Y, Ben-David O, Reddy S, Atzmon G, Crandall J, Barzilai N. Lifestyle factors of people with exceptional longevity. *J Am Geriatr Soc*. 2011; 59: 1509–1512. DOI: 10.1111/j.1532-5415.2011.03498.x [PubMed: 21812767]

79. Wojczynski MK, Jiuan Lin S, Sebastiani P, Perls TT, Lee J, Kulminski A, Newman A, Zmuda JM, Christensen K, Province MA. NIA Long Life Family Study: Objectives, Design, and Heritability of Cross-Sectional and Longitudinal Phenotypes. *J Gerontol A Biol Sci Med Sci*. 2022; 77: 717–727. DOI: 10.1093/gerona/glab333 [PubMed: 34739053]

80. Toniolo L, Sirago G, Giacomello E. Experimental models for ageing research. *Histol Histopathol*. 2023; 38: 597–605. [PubMed: 36602135]

81. Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R. Animal models of aging research: implications for human aging and age-related diseases. *Annu Rev Anim Biosci*. 2015; 3: 283–303. [PubMed: 25689319]

82. Austad SN, Podlutsky A. *Handbook of the Biology of Aging*. Masoro, EJ, editor. Austad SNAcademic Press; 2006. 449–467.

83. Wolf AM. Rodent diet aids and the fallacy of caloric restriction. *Mech Ageing Dev*. 2021; 200 111584 [PubMed: 34673082]

84. Martin B, Ji S, Maudsley S, Mattson MP. "Control" laboratory rodents are metabolically morbid: why it matters. *Proc Natl Acad Sci U S A*. 2010; 107: 6127–6133. DOI: 10.1073/pnas.0912955107 [PubMed: 20194732]

85. Panowski SH, Dillin A. Signals of youth: endocrine regulation of aging in *Caenorhabditis elegans*. *Trends Endocrinol Metab*. 2009; 20: 259–264. [PubMed: 19646896]
86. Kern CC, Srivastava S, Ezcurra M, Hsiung KC, Hui N, Townsend S, Maczik D, Zhang B, Tse V, Konstantellos V, Bahler J, et al. *C. elegans* ageing is accelerated by a self-destructive reproductive programme. *Nat Commun*. 2023; 14: 4381 doi: 10.1038/s41467-023-40088-1 [PubMed: 37474586]
87. Perlman RL. Mouse models of human disease: An evolutionary perspective. *Evol Med Public Health*. 2016; 2016: 170–176. DOI: 10.1093/empheow014 [PubMed: 27121451]
88. Agoston DV. How to Translate Time? The Temporal Aspect of Human and Rodent Biology. *Front Neurol*. 2017; 8: 92. doi: 10.3389/fneur.2017.00092 [PubMed: 28367138]
89. Oeseburg H, de Boer RA, van Gilst WH, van der Harst P. Telomere biology in healthy aging and disease. *Pflugers Arch*. 2010; 459: 259–268. DOI: 10.1007/s00424-009-0728-1 [PubMed: 19756717]
90. Cohen AA. Aging across the tree of life: The importance of a comparative perspective for the use of animal models in aging. *Biochim Biophys Acta Mol Basis Dis*. 2018; 1864: 2680–2689. [PubMed: 28690188]
91. Edwards JE, Hiltz E, Broell F, Bushnell PG, Campana SE, Christiansen JS, Devine BM, Gallant JJ, Hedges KJ, MacNeil MA, McMeans BC, et al. Advancing Research for the Management of Long-Lived Species: A Case Study on the Greenland Shark. *Frontiers in Marine Science*. 2019; 6
92. Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, et al. Alternative Animal Models of Aging Research. *Front Mol Biosci*. 2021; 8: 660959 doi: 10.3389/fmbo.2021.660959 [PubMed: 34079817]
93. Jove M, Mota-Martorell N, Fernandez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. *Free Radic Biol Med*. 2023; 208: 728–747. [PubMed: 37748717]
94. Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: Separating fact from fiction. *Science*. 2021; 374: eabe7365 doi: 10.1126/science.abe7365 [PubMed: 34793210]
95. Ganeshan K, Chawla A. Warming the mouse to model human diseases. *Nat Rev Endocrinol*. 2017; 13: 458–465. DOI: 10.1038/nrendo.2017.48 [PubMed: 28497813]
96. Skop V, Guo J, Liu N, Xiao C, Hall KD, Gavrilova O, Reitman ML. Mouse Thermoregulation: Introducing the Concept of the Thermoneutral Point. *Cell Rep*. 2020; 31: 107501 doi: 10.1016/j.celrep.2020.03.065 [PubMed: 32294435]
97. Booth FW, Laye MJ. Lack of adequate appreciation of physical exercise's complexities can pre-empt appropriate design and interpretation in scientific discovery. *J Physiol*. 2009; 587: 5527–5539. DOI: 10.1113/jphysiol.2009.179507 [PubMed: 19723782]
98. Widjaja AA, Lim WW, Viswanathan S, Chothani S, Corden B, Dasan CM, Goh JWT, Lim R, Singh BK, Tan J, Pua CJ, et al. Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. *Nature*. 2024; 632: 157–165. DOI: 10.1038/s41586-024-07701-9 [PubMed: 39020175]
99. Miller RA. Blocking an inflammatory protein slows the pace of ageing. *Nature*. 2024; 632: 35–36. [PubMed: 39075214]
100. Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. *Front Immunol*. 2020; 11: 1424 doi: 10.3389/fimmu.2020.01424 [PubMed: 32765502]
101. Langston PK, Mathis D. Immunological regulation of skeletal muscle adaptation to exercise. *Cell Metab*. 2024; 36: 1175–1183. DOI: 10.1016/j.cmet.2024.04.001 [PubMed: 38670108]
102. Alic N, Partridge L. Antagonizing Methuselah to extend life span. *Genome Biol*. 2007; 8: 222. doi: 10.1186/gb-2007-8-8-222 [PubMed: 17764591]
103. Gems D, Partridge L. Genetics of longevity in model organisms: debates and paradigm shifts. *Annu Rev Physiol*. 2013; 75: 621–644. [PubMed: 23190075]
104. Valencak TG, Spenlingwimmer T, Nimphy R, Reinisch I, Hoffman JM, Prokesch A. Challenging a “Cushy” Life: Potential Roles of Thermogenesis and Adipose Tissue Adaptations in Delayed Aging of Ames and Snell Dwarf Mice. *Metabolites*. 2020; 10 doi: 10.3390/metabo10050176 [PubMed: 32365727]

105. Flurkey K, Papaconstantinou J, Harrison DE. The Snell dwarf mutation Pit1(dw) can increase life span in mice. *Mech Ageing Dev.* 2002; 123: 121–130. [PubMed: 11718806]
106. Bartke A. Growth hormone and aging. *Rev Endocr Metab Disord.* 2021; 22: 71–80. [PubMed: 33001358]
107. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng CW, Hwang D, Martin-Montalvo A, Saavedra J, Ingles S, de Cabo R, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. *Sci Transl Med.* 2011; 3 70ra13 doi: 10.1126/scitranslmed.3001845 [PubMed: 21325617]
108. Bartke A, Quainoo N. Impact of Growth Hormone-Related Mutations on Mammalian Aging. *Front Genet.* 2018; 9: 586. doi: 10.3389/fgene.2018.00586 [PubMed: 30542372]
109. Aguiar-Oliveira MH, Bartke A. Growth Hormone Deficiency: Health and Longevity. *Endocr Rev.* 2019; 40: 575–601. DOI: 10.1210/er.2018-00216 [PubMed: 30576428]
110. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. *Cell.* 2023; 186: 243–278. [PubMed: 36599349]
111. Gems D, de Magalhaes JP. The hoverfly and the wasp: A critique of the hallmarks of aging as a paradigm. *Ageing Res Rev.* 2021; 70 101407 doi: 10.1016/j.arr.2021.101407 [PubMed: 34271186]
112. Bellantuono I. Find drugs that delay many diseases of old age. *Nature.* 2018; 554: 293–295. [PubMed: 29446384]
113. Keshavarz M, Xie K, Schaaf K, Bano D, Ehninger D. Targeting the "hallmarks of aging" to slow aging and treat age-related disease: fact or fiction?. *Mol Psychiatry.* 2023; 28: 242–255. DOI: 10.1038/s41380-022-01680-x [PubMed: 35840801]
114. Mishra SK, Balendra V, Esposto J, Obaid AA, Maccioni RB, Jha NK, Perry G, Moustafa M, Al-Shehri M, Singh MP, Khan AA, et al. Therapeutic Antiaging Strategies. *Biomedicines.* 2022; 10 doi: 10.3390/biomedicines10102515 [PubMed: 36289777]
115. De Sousa Lages A, Lopes V, Horta J, Espregueira-Mendes J, Andrade R, Rebelo-Marques A. Therapeutics That Can Potentially Replicate or Augment the Anti-Aging Effects of Physical Exercise. *Int J Mol Sci.* 2022; 23 doi: 10.3390/ijms23179957 [PubMed: 36077358]
116. Chaudhari PS, Ermolaeva MA. Too old for healthy aging? Exploring age limits of longevity treatments. *NPJ Metab Health Dis.* 2024; 2: 37. doi: 10.1038/s44324-024-00040-3 [PubMed: 39678297]
117. Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, Fernandez E, Flurkey K, Hamilton KL, Lamming DW, Javors MA, et al. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an alpha-glucosidase inhibitor or a Nrf2-inducer. *Aging Cell.* 2016; 15: 872–884. DOI: 10.1111/ace.12496 [PubMed: 27312235]
118. Barinda AJ, Hardi H, Louisa M, Khatimah NG, Marliau RM, Felix I, Fadhillah MR, Jamal AK. Repurposing effect of cardiovascular-metabolic drug to increase lifespan: a systematic review of animal studies and current clinical trial progress. *Front Pharmacol.* 2024; 15 1373458 doi: 10.3389/fphar.2024.1373458 [PubMed: 38966557]
119. Miller RA, Harrison DE, Allison DB, Bogue M, Debarba L, Diaz V, Fernandez E, Galecki A, Garvey WT, Jayarathne H, Kumar N, et al. Canagliflozin extends life span in genetically heterogeneous male but not female mice. *JCI Insight.* 2020; 5 doi: 10.1172/jci.insight.140019 [PubMed: 32990681]
120. Harrison DE, Strong R, Reifsnyder P, Rosenthal N, Korstanje R, Fernandez E, Flurkey K, Ginsburg BC, Murrell MD, Javors MA, Lopez-Cruzan M, et al. Astaxanthin and meclizine extend lifespan in UM-HET3 male mice; fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate do not significantly affect lifespan in either sex at the doses and schedules used. *Geroscience.* 2024; 46: 795–816. DOI: 10.1007/s11357-023-01011-0 [PubMed: 38041783]
121. Bin P, Zhu C, Liu S, Li Z, Ren W, Zhu G. Perspective: Methionine Restriction-Induced Longevity-A Possible Role for Inhibiting the Synthesis of Bacterial Quorum Sensing Molecules. *Adv Nutr.* 2020; 11: 773–783. DOI: 10.1093/advances/nmaa028 [PubMed: 32221578]

122. Dang Y, An Y, He J, Huang B, Zhu J, Gao M, Zhang S, Wang X, Yang B, Xie Z. Berberine ameliorates cellular senescence and extends the lifespan of mice via regulating p16 and cyclin protein expression. *Aging Cell*. 2020; 19 e13060 doi: 10.1111/acel.13060 [PubMed: 31773901]
123. Johnson AA, Cuellar TL. Glycine and aging: Evidence and mechanisms. *Ageing Res Rev*. 2023; 87 101922 [PubMed: 37004845]
124. Xue H, Thaivalappil A, Cao K. The Potentials of Methylene Blue as an Anti-Aging Drug. *Cells*. 2021; 10 doi: 10.3390/cells10123379 [PubMed: 34943887]
125. Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M. Berberine as a potential autophagy modulator. *J Cell Physiol*. 2019; 234: 14914–14926. [PubMed: 30770555]
126. Mondal SA, Mann SN, van der Linden C, Sathiaseelan R, Kamal M, Das S, Bubak MP, Logan S, Miller BF, Stout MB. Metabolic benefits of 17alpha-estradiol in liver are partially mediated by ERbeta in male mice. *Sci Rep*. 2023; 13 9841 doi: 10.1038/s41598-023-37007-1 [PubMed: 37330610]
127. La Grotta R, Frige C, Matacchione G, Olivieri F, de Candia P, Ceriello A, Prattichizzo F. Repurposing SGLT-2 Inhibitors to Target Aging: Available Evidence and Molecular Mechanisms. *Int J Mol Sci*. 2022; 23 doi: 10.3390/ijms232012325 [PubMed: 36293181]
128. Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. *Aging Cell*. 2008; 7: 641–650. DOI: 10.1111/j.1474-9726.2008.00414.x [PubMed: 18631321]
129. Knufinke M, MacArthur MR, Ewald CY, Mitchell SJ. Sex differences in pharmacological interventions and their effects on lifespan and healthspan outcomes: a systematic review. *Front Aging*. 2023; 4 1172789 doi: 10.3389/fragi.2023.1172789 [PubMed: 37305228]
130. Bene M, Salmon AB. Testing the evidence that lifespan-extending compound interventions are conserved across laboratory animal model species. *Geroscience*. 2023; 45: 1401–1409. DOI: 10.1007/s11357-022-00722-0 [PubMed: 36637786]
131. Lee MB, Blue B, Muir M, Kaeberlein M. The million-molecule challenge: a moonshot project to rapidly advance longevity intervention discovery. *Geroscience*. 2023; 45: 3103–3113. DOI: 10.1007/s11357-023-00867-6 [PubMed: 37432607]
132. Sharp ZD, Strong R. Rapamycin, the only drug that has been consistently demonstrated to increase mammalian longevity. An update. *Exp Gerontol*. 2023; 176 112166 doi: 10.1016/j.exger.2023.112166 [PubMed: 37011714]
133. Leslie M. Hunt for longevity drugs gets new life. *Science*. 2024; 385 1148 [PubMed: 39265000]
134. Leslie M. Viagra and other unlikely candidates lead hunt for new longevity drugs. *Science*. 2024; 385
135. Biomarkers of Aging C. Herzog CMS, Goeminne LJE, Poganik JR, Barzilai N, Belsky DW, Betts-LaCroix J, Chen BH, Chen M, Cohen AA, Cummings SR, et al. Challenges and recommendations for the translation of biomarkers of aging. *Nat Aging*. 2024; 4: 1372–1383. [PubMed: 39285015]
136. Finkel T. Ageing: a toast to long life. *Nature*. 2003; 425: 132–133. [PubMed: 12968159]
137. Hall SS. Longevity research. *In vino vitalis? Compounds activate life-extending genes*. *Science*. 2003; 301 1165 [PubMed: 12947168]
138. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. *J Gerontol A Biol Sci Med Sci*. 2011; 66: 191–201. DOI: 10.1093/gerona/glp178 [PubMed: 20974732]
139. Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L. Effects of resveratrol on lifespan in *Drosophila melanogaster* and *Caenorhabditis elegans*. *Mech Ageing Dev*. 2007; 128: 546–552. [PubMed: 17875315]
140. Kaeberlein M, McDonagh T, Heltweg B, Hixon J, Westman EA, Caldwell SD, Napper A, Curtis R, DiStefano PS, Fields S, Bedalov A, et al. Substrate-specific activation of sirtuins by resveratrol. *J Biol Chem*. 2005; 280: 17038–17045. [PubMed: 15684413]

141. Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M. Resveratrol is not a direct activator of SIRT1 enzyme activity. *Chem Biol Drug Des.* 2009; 74: 619–624. [PubMed: 19843076]

142. Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. *J Biol Chem.* 2010; 285: 8340–8351. DOI: 10.1074/jbc.M109.088682 [PubMed: 20061378]

143. Brenner C. Sirtuins are Not Conserved Longevity Genes. *Life Metab.* 2022; 1: 122–133. DOI: 10.1093/lifemeta/loac025 [PubMed: 37035412]

144. Schmidt C. GSK/Sirtris compounds dogged by assay artifacts. *Nat Biotechnol.* 2010; 28: 185–186. [PubMed: 20212464]

145. Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH, Nasrallah GK, Pintus G. Potential Adverse Effects of Resveratrol: A Literature Review. *Int J Mol Sci.* 2020; 21 doi: 10.3390/ijms21062084 [PubMed: 32197410]

146. Pezzuto JM. Resveratrol: Twenty Years of Growth, Development and Controversy. *Biomol Ther (Seoul).* 2019; 27: 1–14. DOI: 10.4062/biomolther.2018.176 [PubMed: 30332889]

147. Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. *Curr Pharm Des.* 2013; 19: 6064–6093. DOI: 10.2174/13816128113199990407 [PubMed: 23448440]

148. Cai T, Hu Y, Ding B, Yan R, Liu B, Cai L, Jing T, Jiang L, Xie X, Wang Y, Wang H, et al. Effect of Metformin on Testosterone Levels in Male Patients With Type 2 Diabetes Mellitus Treated With Insulin. *Front Endocrinol (Lausanne).* 2021; 12 813067 doi: 10.3389/fendo.2021.813067 [PubMed: 35002984]

149. Mohammed I, Hollenberg MD, Ding H, Triggle CR. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. *Front Endocrinol (Lausanne).* 2021; 12 718942 doi: 10.3389/fendo.2021.718942 [PubMed: 34421827]

150. Parish AJ, Swindell WR. Metformin has heterogeneous effects on model organism lifespans and is beneficial when started at an early age in *Caenorhabditis elegans*: A systematic review and meta-analysis. *Aging Cell.* 2022; 21 e13733 doi: 10.1111/acel.13733 [PubMed: 36281624]

151. Keys MT, Thinggaard M, Larsen LA, Pedersen DA, Hallas J, Christensen K. Reassessing the evidence of a survival advantage in Type 2 diabetes treated with metformin compared with controls without diabetes: a retrospective cohort study. *Int J Epidemiol.* 2022; 51: 1886–1898. [PubMed: 36287641]

152. Lee CG, Heckman-Stoddard B, Dabelea D, Gadde KM, Ehrmann D, Ford L, Prorok P, Boyko EJ, Pi-Sunyer X, Wallia A, Knowler WC, et al. Effect of Metformin and Lifestyle Interventions on Mortality in the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study. *Diabetes Care.* 2021; 44: 2775–2782. DOI: 10.2337/dc21-1046 [PubMed: 34697033]

153. Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases?. *Metabolism.* 2022; 133 155223 [PubMed: 35640743]

154. Yang Y, Lu X, Liu N, Ma S, Zhang H, Zhang Z, Yang K, Jiang M, Zheng Z, Qiao Y, Hu Q, et al. Metformin decelerates aging clock in male monkeys. *Cell.* 2024; 187: 6358–6378. e6329 [PubMed: 39270656]

155. Kozlov M. The brain aged more slowly in monkeys given a cheap diabetes drug. *Nature.* 2024. [PubMed: 39266738]

156. Wang D, Eisen HJ. Mechanistic Target of Rapamycin (mTOR) Inhibitors. *Handb Exp Pharmacol.* 2022; 272: 53–72. [PubMed: 35091825]

157. Kaeberlein M. Rapamycin and ageing: when, for how long, and how much?. *J Genet Genomics.* 2014; 41: 459–463. DOI: 10.1016/j.jgg.2014.06.009 [PubMed: 25269671]

158. Ham DJ, Borsch A, Lin S, Thurkauf M, Weihrauch M, Reinhard JR, Delezic J, Battilana F, Wang X, Kaiser MS, Guridi M, et al. The neuromuscular junction is a focal point of mTORC1 signaling in sarcopenia. *Nat Commun.* 2020; 11 4510 doi: 10.1038/s41467-020-18140-1 [PubMed: 32908143]

159. Ham DJ, Borsch A, Chojnowska K, Lin S, Leuchtmann AB, Ham AS, Thurkauf M, Delezic J, Furrer R, Burri D, Sinnreich M, et al. Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. *Nat Commun.* 2022; 13: 2025 doi: 10.1038/s41467-022-29714-6 [PubMed: 35440545]

160. Unnikrishnan A, Kurup K, Salmon AB, Richardson A. Is Rapamycin a Dietary Restriction Mimetic?. *J Gerontol A Biol Sci Med Sci.* 2020; 75: 4–13. DOI: 10.1093/gerona/glz060 [PubMed: 30854544]

161. Orenduff MC, Coleman MF, Glenny EM, Huffman KM, Rezeli ET, Bareja A, Pieper CF, Kraus VB, Hursting SD. Differential effects of calorie restriction and rapamycin on age-related molecular and functional changes in skeletal muscle. *Exp Gerontol.* 2022; 165: 111841 doi: 10.1016/j.exger.2022.111841 [PubMed: 35623538]

162. Lee DJW, Hodzic Kuerc A, Maier AB. Targeting ageing with rapamycin and its derivatives in humans: a systematic review. *Lancet Healthy Longev.* 2024; 5: e152–e162. [PubMed: 38310895]

163. Trelinska J, Dachowska I, Kotulska K, Fendler W, Jozwiak S, Mlynarski W. Complications of mammalian target of rapamycin inhibitor anticancer treatment among patients with tuberous sclerosis complex are common and occasionally life-threatening. *Anticancer Drugs.* 2015; 26: 437–442. [PubMed: 25719621]

164. Kaeberlein M. RTB101 and immune function in the elderly: Interpreting an unsuccessful clinical trial. *Translational Medicine of Aging.* 2020; 4: 32–34.

165. Faes S, Demartines N, Dormond O. Mechanistic Target of Rapamycin Inhibitors in Renal Cell Carcinoma: Potential, Limitations, and Perspectives. *Front Cell Dev Biol.* 2021; 9: 636037 doi: 10.3389/fcell.2021.636037 [PubMed: 33791295]

166. Grunewald M, Kumar S, Sharife H, Volinsky E, Gileles-Hillel A, Licht T, Permyakova A, Hinden L, Azar S, Friedmann Y, Kupetz P, et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. *Science.* 2021; 373 [PubMed: 34326210]

167. Paquette M, El-Houjeiri L, Pause A. mTOR Pathways in Cancer and Autophagy. *Cancers (Basel).* 2018; 10 doi: 10.3390/cancers10010018 [PubMed: 29329237]

168. Mabood Khalil MA, Al-Ghamdi SMG, Dawood US, Ahmed Khamis SS, Ishida H, Chong VH, Tan J. Mammalian Target of Rapamycin Inhibitors and Wound Healing Complications in Kidney Transplantation: Old Myths and New Realities. *J Transplant.* 2022; 2022: 6255339 doi: 10.1155/2022/6255339 [PubMed: 35265364]

169. Triana P, Lopez-Gutierrez JC. Menstrual disorders associated with sirolimus treatment. *Pediatr Blood Cancer.* 2021; 68: e28867 [PubMed: 33369022]

170. Guo Z, Yu Q. Role of mTOR Signaling in Female Reproduction. *Front Endocrinol (Lausanne).* 2019; 10: 692. doi: 10.3389/fendo.2019.00692 [PubMed: 31649622]

171. Oliveira PF, Cheng CY, Alves MG. Emerging Role for Mammalian Target of Rapamycin in Male Fertility. *Trends Endocrinol Metab.* 2017; 28: 165–167. DOI: 10.1016/j.tem.2016.12.004 [PubMed: 28063768]

172. Kaplan B, Qazi Y, Wellen JR. Strategies for the management of adverse events associated with mTOR inhibitors. *Transplant Rev (Orlando).* 2014; 28: 126–133. [PubMed: 24685370]

173. Johnston O, Rose CL, Webster AC, Gill JS. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. *J Am Soc Nephrol.* 2008; 19: 1411–1418. DOI: 10.1681/ASN.2007111202 [PubMed: 18385422]

174. Teutonico A, Schena PF, Di Paolo S. Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. *J Am Soc Nephrol.* 2005; 16: 3128–3135. [PubMed: 16107580]

175. Shi Q, Chang C, Saliba A, Bhat MA. Microglial mTOR Activation Upregulates Trem2 and Enhances beta-Amyloid Plaque Clearance in the 5XFAD Alzheimer's Disease Model. *J Neurosci.* 2022; 42: 5294–5313. DOI: 10.1523/JNEUROSCI.2427-21.2022 [PubMed: 35672148]

176. Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. *Nat Rev Mol Cell Biol.* 2021; 22: 75–95. DOI: 10.1038/s41580-020-00314-w [PubMed: 33328614]

177. Davan-Wetton CSA, Pessolano E, Perretti M, Montero-Melendez T. Senescence under appraisal: hopes and challenges revisited. *Cell Mol Life Sci.* 2021; 78: 3333–3354. DOI: 10.1007/s00018-020-03746-x [PubMed: 33439271]

178. Zhao H, Liu Z, Chen H, Han M, Zhang M, Liu K, Jin H, Liu X, Shi M, Pu W, Werner M, et al. Identifying specific functional roles for senescence across cell types. *Cell.* 2024; 187: 7314–7334. e7321 [PubMed: 39368477]

179. de Magalhaes JP. Cellular senescence in normal physiology. *Science.* 2024; 384: 1300–1301. [PubMed: 38900869]

180. Kim MH, Kino-Oka M. Bioprocessing Strategies for Pluripotent Stem Cells Based on Waddington’s Epigenetic Landscape. *Trends Biotechnol.* 2018; 36: 89–104. [PubMed: 29122288]

181. Moris N, Pina C, Arias AM. Transition states and cell fate decisions in epigenetic landscapes. *Nat Rev Genet.* 2016; 17: 693–703. [PubMed: 27616569]

182. Rajagopal J, Stanger BZ. Plasticity in the Adult: How Should the Waddington Diagram Be Applied to Regenerating Tissues?. *Dev Cell.* 2016; 36: 133–137. [PubMed: 26812013]

183. Watanabe A, Yamada Y, Yamanaka S. Epigenetic regulation in pluripotent stem cells: a key to breaking the epigenetic barrier. *Philos Trans R Soc Lond B Biol Sci.* 2013; 368 20120292 doi: 10.1098/rstb.2012.0292 [PubMed: 23166402]

184. de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. *Geroscience.* 2021; 43: 463–485. DOI: 10.1007/s11357-021-00358-6 [PubMed: 33825176]

185. Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. *Life Sci.* 2024; 351 122842 [PubMed: 38879158]

186. Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. *Signal Transduct Target Ther.* 2022; 7: 374. doi: 10.1038/s41392-022-01211-8 [PubMed: 36336680]

187. Debes C, Papadakis A, Gronke S, Karalay O, Tain LS, Mizi A, Nakamura S, Hahn O, Weigelt C, Josipovic N, Zirkel A, et al. Ageing-associated changes in transcriptional elongation influence longevity. *Nature.* 2023; 616: 814–821. DOI: 10.1038/s41586-023-05922-y [PubMed: 37046086]

188. Pal S, Tyler JK. Epigenetics and aging. *Sci Adv.* 2016; 2 e1600584 doi: 10.1126/sciadv.1600584 [PubMed: 27482540]

189. Schumann GG, Fuchs NV, Tristan-Ramos P, Sebe A, Ivics Z, Heras SR. The impact of transposable element activity on therapeutically relevant human stem cells. *Mob DNA.* 2019; 10: 9. doi: 10.1186/s13100-019-0151-x [PubMed: 30899334]

190. Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. *EMBO Rep.* 2014; 15: 244–253. DOI: 10.1002/embr.201338254 [PubMed: 24531722]

191. Parras A, Vilchez-Acosta A, Desdin-Mico G, Pico S, Mrabti C, Montenegro-Borbolla E, Maroun CY, Haghani A, Brooke R, Del Carmen Maza M, Rechsteiner C, et al. In vivo reprogramming leads to premature death linked to hepatic and intestinal failure. *Nat Aging.* 2023; 3: 1509–1520. [PubMed: 38012287]

192. Williams BR, Cho JS. Hormone Replacement: The Fountain of Youth?. *Prim Care.* 2017; 44: 481–498. [PubMed: 28797374]

193. Samaras N, Papadopoulou MA, Samaras D, Ongaro F. Off-label use of hormones as an antiaging strategy: a review. *Clin Interv Aging.* 2014; 9: 1175–1186. DOI: 10.2147/CIA.S48918 [PubMed: 25092967]

194. Fraile M, Eiro N, Costa LA, Martin A, Vizoso FJ. Aging and Mesenchymal Stem Cells: Basic Concepts, Challenges and Strategies. *Biology (Basel).* 2022; 11 doi: 10.3390/biology11111678 [PubMed: 36421393]

195. Keyes BE, Fuchs E. Stem cells: Aging and transcriptional fingerprints. *J Cell Biol.* 2018; 217: 79–92. DOI: 10.1083/jcb.201708099 [PubMed: 29070608]

196. Liu MN, Lan Q, Wu H, Qiu CW. Rejuvenation of young blood on aging organs: Effects, circulating factors, and mechanisms. *Heliyon.* 2024; 10 e32652 doi: 10.1016/j.heliyon.2024.e32652 [PubMed: 38994040]

197. Rebo J, Mehdipour M, Gathwala R, Causey K, Liu Y, Conboy MJ, Conboy IM. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. *Nat Commun.* 2016; 7: 13363 doi: 10.1038/ncomms13363 [PubMed: 27874859]

198. Kang S, Moser VA, Svendsen CN, Goodridge HS. Rejuvenating the blood and bone marrow to slow aging-associated cognitive decline and Alzheimer's disease. *Commun Biol.* 2020; 3: 69. doi: 10.1038/s42003-020-0797-4 [PubMed: 32054965]

199. Hofmann B. Young Blood Rejuvenates Old Bodies: A Call for Reflection when Moving from Mice to Men. *Transfus Med Hemother.* 2018; 45: 67–71. DOI: 10.1159/000481828 [PubMed: 29593463]

200. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. *Journal of Nutrition.* 1935; 10: 63–79. [PubMed: 2520283]

201. McDonald RB, Ramsey JJ. Honoring Clive McCay and 75 years of calorie restriction research. *J Nutr.* 2010; 140: 1205–1210. DOI: 10.3945/jn.110.122804 [PubMed: 20484554]

202. Le Bourg E. Predicting whether dietary restriction would increase longevity in species not tested so far. *Ageing Res Rev.* 2010; 9: 289–297. [PubMed: 20105461]

203. Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. *Science.* 2010; 328: 321–326. DOI: 10.1126/science.1172539 [PubMed: 20395504]

204. Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley EH, Lust G, Segre M, Smith GK, Stowe HD. Effects of diet restriction on life span and age-related changes in dogs. *J Am Vet Med Assoc.* 2002; 220: 1315–1320. [PubMed: 11991408]

205. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. *Science.* 2009; 325: 201–204. DOI: 10.1126/science.1173635 [PubMed: 19590001]

206. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. *Nature.* 2012; 489: 318–321. DOI: 10.1038/nature11432 [PubMed: 22932268]

207. Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM. Caloric restriction improves health and survival of rhesus monkeys. *Nat Commun.* 2017; 8: 14063 doi: 10.1038/ncomms14063 [PubMed: 28094793]

208. Austad SN. Ageing: Mixed results for dieting monkeys. *Nature.* 2012; 489: 210–211. [PubMed: 22932269]

209. Maxmen A. Calorie restriction falters in the long run. *Nature.* 2012; 488: 569. [PubMed: 22932356]

210. Sohal RS, Forster MJ. Caloric restriction and the aging process: a critique. *Free Radic Biol Med.* 2014; 73: 366–382. DOI: 10.1016/j.freeradbiomed.2014.05.015 [PubMed: 24941891]

211. Harper JM, Leathers CW, Austad SN. Does caloric restriction extend life in wild mice?. *Aging Cell.* 2006; 5: 441–449. DOI: 10.1111/j.1474-9726.2006.00236.x [PubMed: 17054664]

212. Liao CY, Rikke BA, Johnson TE, Diaz V, Nelson JF. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. *Aging Cell.* 2010; 9: 92–95. DOI: 10.1111/j.1474-9726.2009.00533.x [PubMed: 19878144]

213. Schleit J, Johnson SC, Bennett CF, Simko M, Trongham N, Castanza A, Hsieh EJ, Moller RM, Wasko BM, Delaney JR, Sutphin GL, et al. Molecular mechanisms underlying genotype-dependent responses to dietary restriction. *Aging Cell.* 2013; 12: 1050–1061. DOI: 10.1111/acel.12130 [PubMed: 23837470]

214. Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, Fang E, Aon M, Gonzalez-Reyes JA, Cortassa S, Kaushik S, Gonzalez-Freire M, Patel B, Wahl D, et al. Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. *Cell Metab.* 2016; 23: 1093–1112. DOI: 10.1016/j.cmet.2016.05.027 [PubMed: 27304509]

215. Di Francesco A, Deighan AG, Litichevskiy L, Chen Z, Luciano A, Robinson L, Garland G, Donato H, Vincent M, Schott W, Wright KM, et al. Dietary restriction impacts health and lifespan of genetically diverse mice. *Nature.* 2024; 634: 684–692. DOI: 10.1038/s41586-024-08026-3 [PubMed: 39385029]

216. Selman C, Swindell WR. Putting a strain on diversity. *EMBO J.* 2018; 37 doi: 10.15252/embj.2018100862 [PubMed: 30389663]

217. Spiridonova O, Kriukov D, Nemirovich-Danchenko N, Peshkin L. On standardization of controls in lifespan studies. *Aging (Albany NY)*. 2024; 16: 3047–3055. DOI: 10.18632/aging.205604 [PubMed: 38421245]

218. Pabis K, Barardo D, Gruber J, Sirbu O, Selvarajoo K, Kaeberlein M, Kennedy BK. The impact of short-lived controls on the interpretation of lifespan experiments and progress in geroscience. *bioRxiv*. 2023. [PubMed: 39332712]

219. Hofer SJ, Carmona-Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. *EMBO Mol Med.* 2022; 14 e14418 doi: 10.15252/emmm.202114418 [PubMed: 34779138]

220. Dakic T, Jevdjovic T, Vujovic P, Mladenovic A. The Less We Eat, the Longer We Live: Can Caloric Restriction Help Us Become Centenarians?. *Int J Mol Sci.* 2022; 23 doi: 10.3390/ijms23126546 [PubMed: 35742989]

221. Eissenberg JC. Hungering for Immortality. *Mo Med.* 2018; 115: 12–17. [PubMed: 30228670]

222. Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: An update. *Ageing Res Rev.* 2017; 39: 36–45. DOI: 10.1016/j.arr.2016.08.005 [PubMed: 27544442]

223. Huffman KM, Parker DC, Bhapkar M, Racette SB, Martin CK, Redman LM, Das SK, Connelly MA, Pieper CF, Orenduff M, Ross LM, et al. Calorie restriction improves lipid-related emerging cardiometabolic risk factors in healthy adults without obesity: Distinct influences of BMI and sex from CALERIE a multicentre, phase 2, randomised controlled trial. *EClinicalMedicine.* 2022; 43 101261 doi: 10.1016/j.eclinm.2021.101261 [PubMed: 35028547]

224. Hong J, Yun CO. Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases. *Cells.* 2019; 8 doi: 10.3390/cells8050392 [PubMed: 31035374]

225. Borges G, Criqui M, Harrington L. Tieing together loose ends: telomere instability in cancer and aging. *Mol Oncol.* 2022; 16: 3380–3396. DOI: 10.1002/1878-0261.13299 [PubMed: 35920280]

226. DeBoy EA, Tassia MG, Schratz KE, Yan SM, Cosner ZL, McNally EJ, Gable DL, Xiang Z, Lombard DB, Antonarakis ES, Gocke CD, et al. Familial Clonal Hematopoiesis in a Long Telomere Syndrome. *N Engl J Med.* 2023; 388: 2422–2433. DOI: 10.1056/NEJMoa2300503 [PubMed: 37140166]

227. McNally EJ, Luncsford PJ, Armanios M. Long telomeres and cancer risk: the price of cellular immortality. *J Clin Invest.* 2019; 129: 3474–3481. DOI: 10.1172/JCI120851 [PubMed: 31380804]

228. Ertl HCJ. Immunogenicity and toxicity of AAV gene therapy. *Front Immunol.* 2022; 13 975803 doi: 10.3389/fimmu.2022.975803 [PubMed: 36032092]

229. Mucke MM, Fong S, Foster GR, Lillicrap D, Miesbach W, Zeuzem S. Adeno-associated viruses for gene therapy - clinical implications and liver-related complications, a guide for hepatologists. *J Hepatol.* 2024; 80: 352–361. [PubMed: 37890721]

230. Swain F. Inside the Secretive Life-Extension Clinic WIRED. 2025. 30.01.2025 <https://www.wired.com/story/bioviva-gene-therapies-liz-parrish-longevity/>

231. Collaborators GBDRF. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet.* 2024; 403: 2162–2203. DOI: 10.1016/S0140-6736(24)00933-4 [PubMed: 38762324]

232. Bosnes I, Nordahl HM, Stordal E, Bosnes O, Myklebust TA, Almkvist O. Lifestyle predictors of successful aging: A 20-year prospective HUNT study. *PLoS One.* 2019; 14 e0219200 doi: 10.1371/journal.pone.0219200 [PubMed: 31295289]

233. Jamison DT, Summers LH, Chang AY, Karlsson O, Mao W, Norheim OF, Ogbuoji O, Schaferhoff M, Watkins D, Adeyi O, Alleyne G, et al. Global health 2050: the path to halving premature death by mid-century. *Lancet.* 2024; 404: 1561–1614. [PubMed: 39419055]

234. Bian Z, Wang L, Fan R, Sun J, Yu L, Xu M, Timmers P, Shen X, Wilson JF, Theodoratou E, Wu X, et al. Genetic predisposition, modifiable lifestyles, and their joint effects on human lifespan: evidence from multiple cohort studies. *BMJ Evid Based Med.* 2024; 29: 255–263. [PubMed: 38684374]

235. Argentieri MA, Amin N, Nevado-Holgado AJ, Sproviero W, Collister JA, Keestra SM, Kuilman MM, Ginos BNR, Ghanbari M, Doherty A, Hunter DJ, et al. Integrating the environmental and genetic architectures of aging and mortality. *Nature Medicine*. 2025; doi: 10.1038/s41591-024-03483-9 [PubMed: 39972219]

236. Gonzalez-Rodriguez P, Fullgrabe J, Joseph B. The hunger strikes back: an epigenetic memory for autophagy. *Cell Death Differ*. 2023; 30: 1404–1415. DOI: 10.1038/s41418-023-01159-4 [PubMed: 37031275]

237. Wu G, Zhang X, Gao F. The epigenetic landscape of exercise in cardiac health and disease. *J Sport Health Sci*. 2021; 10: 648–659. DOI: 10.1016/j.jshs.2020.12.003 [PubMed: 33333247]

238. Plaza-Diaz J, Izquierdo D, Torres-Martos A, Baig AT, Aguilera CM, Ruiz-Ojeda FJ. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. *Biomedicines*. 2022; 10 doi: 10.3390/biomedicines10010126 [PubMed: 35052805]

239. Abraham MJ, El Sherbini A, El-Diasty M, Askari S, Szewczuk MR. Restoring Epigenetic Reprogramming with Diet and Exercise to Improve Health-Related Metabolic Diseases. *Biomolecules*. 2023; 13 doi: 10.3390/biom13020318 [PubMed: 36830687]

240. Li Y, Pan A, Wang DD, Liu X, Dhana K, Franco OH, Kaptoge S, Di Angelantonio E, Stampfer M, Willett WC, Hu FB. Impact of Healthy Lifestyle Factors on Life Expectancies in the US Population. *Circulation*. 2018; 138: 345–355. DOI: 10.1161/CIRCULATIONAHA.117.032047 [PubMed: 29712712]

241. Nguyen XT, Li Y, Wang DD, Whitbourne SB, Houghton SC, Hu FB, Willett WC, Sun YV, Djousse L, Gaziano JM, Cho K, et al. Impact of 8 lifestyle factors on mortality and life expectancy among United States veterans: The Million Veteran Program. *Am J Clin Nutr*. 2024; 119: 127–135. [PubMed: 38065710]

242. Di Fusco SA, Spinelli A, Castello L, Marino G, Maraschi I, Gulizia MM, Gabrielli D, Colivicchi F. Do Pathophysiologic Mechanisms Linking Unhealthy Lifestyle to Cardiovascular Disease and Cancer Imply Shared Preventive Measures? - A Critical Narrative Review. *Circ J*. 2024; 88: 189–197. [PubMed: 34544961]

243. Islami F, Marlow EC, Thomson B, McCullough ML, Rumgay H, Gapstur SM, Patel AV, Soerjomataram I, Jemal A. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States, 2019. *CA Cancer J Clin*. 2024; 74: 405–432. [PubMed: 38990124]

244. Zhang R, Lu Y, Bian Z, Zhou S, Xu L, Jiang F, Yuan S, Tan X, Chen X, Ding Y, Li X. Sleep, physical activity, and sedentary behaviors in relation to overall cancer and site-specific cancer risk: A prospective cohort study. *iScience*. 2024; 27 109931 doi: 10.1016/j.isci.2024.109931 [PubMed: 38974470]

245. Li X, Zhu Y, Yan T, Fang J, Xu X, Xu X. Association between C-reactive protein, Life's Essential 8, and mortality in American adults: Insights from NHANES 2005-2010 data analysis. *Exp Gerontol*. 2024; 196 112590 [PubMed: 39307250]

246. Langevin HM, Weber W, Chen W. Integrated multicomponent interventions to support healthy aging of the whole person. *Aging Cell*. 2024; 23 e14001 doi: 10.1111/acel.14001 [PubMed: 37840416]

247. Matta K, Viallon V, Botteri E, Peveri G, Dahm C, Nannsen AO, Olsen A, Tjonneland A, Elbaz A, Artaud F, Marques C, et al. Healthy lifestyle change and all-cause and cancer mortality in the European Prospective Investigation into Cancer and Nutrition cohort. *BMC Med*. 2024; 22: 210. doi: 10.1186/s12916-024-03362-7 [PubMed: 38807179]

248. Lee CH, Han KD, Kim DH, Kwak MS. Continuing regular physical activity and maintaining body weight have a synergistic interaction in improving survival: a population-based cohort study including 6.5 million people. *Eur J Prev Cardiol*. 2022; 29: 547–555. [PubMed: 34792138]

249. Robb C, Carr PR, Ball J, Owen A, Beilin LJ, Newman AB, Nelson MR, Reid CM, Orchard SG, Neumann JT, Tonkin AM, et al. Association of a healthy lifestyle with mortality in older people. *BMC Geriatr*. 2023; 23: 646. doi: 10.1186/s12877-023-04247-9 [PubMed: 37821846]

250. Zhang YB, Pan XF, Chen J, Cao A, Xia L, Zhang Y, Wang J, Li H, Liu G, Pan A. Combined lifestyle factors, all-cause mortality and cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. *J Epidemiol Community Health*. 2021; 75: 92–99. [PubMed: 32892156]

251. Bonaccio M, Di Castelnuovo A, Costanzo S, De Curtis A, Persichillo M, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Moli-sani Study I. Impact of combined healthy lifestyle factors on survival in an adult general population and in high-risk groups: prospective results from the Moli-sani Study. *J Intern Med.* 2019; 286: 207–220. [PubMed: 30993789]

252. Zhang G, Fu J, Zhang H, Xu X, Cao Z. The impact of Life's Essentials 8 on sarcopenia prevalence among adults in the United States. *Exp Gerontol.* 2024; 198: 112631 [PubMed: 39549889]

253. Naderian M, Norland K, Schaid DJ, Kullo IJ. Development and Evaluation of a Comprehensive Prediction Model for Incident Coronary Heart Disease Using Genetic, Social, and Lifestyle-Psychological Factors: A Prospective Analysis of the UK Biobank. *Ann Intern Med.* 2024; doi: 10.7326/ANNALS-24-00716 [PubMed: 39652873]

254. Li Y, Wang K, Jigeer G, Jensen G, Tucker KL, Lv Y, Shi X, Gao X. Healthy Lifestyle and the Likelihood of Becoming a Centenarian. *JAMA Netw Open.* 2024; 7: e2417931 doi: 10.1001/jamanetworkopen.2024.17931 [PubMed: 38900423]

255. Livingston G, Huntley J, Liu KY, Costafreda SG, Selbaek G, Alladi S, Ames D, Banerjee S, Burns A, Brayne C, Fox NC, et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. *Lancet.* 2024; 404: 572–628. [PubMed: 39096926]

256. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. *Lancet.* 2020; 396: 413–446. DOI: 10.1016/S0140-6736(20)30367-6 [PubMed: 32738937]

257. Sato R, Vatic M, Peixoto da Fonseca GW, Anker SD, von Haehling S. Biological basis and treatment of frailty and sarcopenia. *Cardiovasc Res.* 2024; 120: 982–998. [PubMed: 38828887]

258. Helmrich SP, Ragland DR, Leung RW, Paffenbarger RS Jr. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. *N Engl J Med.* 1991; 325: 147–152. [PubMed: 2052059]

259. Dove A, Wang J, Huang H, Dunk MM, Sakakibara S, Guitart-Masip M, Papenberg G, Xu W. Diabetes, Prediabetes, and Brain Aging: The Role of Healthy Lifestyle. *Diabetes Care.* 2024; 47: 1794–1802. DOI: 10.2337/dc24-0860 [PubMed: 39193914]

260. Farina FR, Bridgeman K, Gregory S, Crivelli L, Foote IF, Jutila OI, Kucikova L, Mariano LI, Nguyen KH, Thayanandan T, Akindejoye F, et al. Next generation brain health: transforming global research and public health to promote prevention of dementia and reduce its risk in young adult populations. *Lancet Healthy Longev.* 2024; 5: 100665 doi: 10.1016/j.lanhl.2024.100665 [PubMed: 39718180]

261. Bushnell C, Kernan WN, Sharrief AZ, Chaturvedi S, Cole JW, Cornwell WK, Cosby-Gaither C, Doyle S, Goldstein LB, Lennon O, Levine DA, et al. 2024 Guideline for the Primary Prevention of Stroke: A Guideline From the American Heart Association/American Stroke Association. *Stroke.* 2024; 55: e344–e424. [PubMed: 39429201]

262. Lin L, Hu Y, Lei F, Huang X, Zhang X, Sun T, Liu W, Li R, Zhang XJ, Cai J, She ZG, et al. Cardiovascular health and cancer mortality: evidence from US NHANES and UK Biobank cohort studies. *BMC Med.* 2024; 22: 368. doi: 10.1186/s12916-024-03553-2 [PubMed: 39237921]

263. Sawalla Guseh J, Lieberman D, Baggish A. The Evidence for Exercise in Medicine - A New Review Series. *NEJM Evid.* 2022; 1: EVIDra2100002 [PubMed: 38319204]

264. Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. *Nature.* 2008; 454: 463–469. DOI: 10.1038/nature07206 [PubMed: 18650917]

265. Jiang G, Zhang W, Kang H, Wang J, Liu Z, Wang Z, Huang D, Gao A. The association between weekly exercise patterns and acceleration of aging: Evidence from a population-based study. *Prev Med.* 2024; 187: 108091 [PubMed: 39111375]

266. Lollgen H, Bockenhoff A, Knapp G. Physical activity and all-cause mortality: an updated meta-analysis with different intensity categories. *Int J Sports Med.* 2009; 30: 213–224. [PubMed: 19199202]

267. Reimers CD, Knapp G, Reimers AK. Does physical activity increase life expectancy? A review of the literature. *J Aging Res.* 2012; 2012: 243958 doi: 10.1155/2012/243958 [PubMed: 22811911]

268. Mori I, Ishizuka T, Morita H, Matsumoto M, Uno Y, Kajita K, Ikeda T, Fujioka K, Matsubara K. Comparison of biochemical data, blood pressure and physical activity between longevity and non-longevity districts in Japan. *Circ J*. 2008; 72: 1680–1684. [PubMed: 18728336]

269. Chudasama YV, Khunti KK, Zaccardi F, Rowlands AV, Yates T, Gillies CL, Davies MJ, Dhalwani NN. Physical activity, multimorbidity, and life expectancy: a UK Biobank longitudinal study. *BMC Med*. 2019; 17: 108. doi: 10.1186/s12916-019-1339-0 [PubMed: 31186007]

270. Buchman AS, Yu L, Boyle PA, Shah RC, Bennett DA. Total daily physical activity and longevity in old age. *Arch Intern Med*. 2012; 172: 444–446. DOI: 10.1001/archinternmed.2011.1477 [PubMed: 22412115]

271. Brandts L, van den Brandt PA. Body size, non-occupational physical activity and the chance of reaching longevity in men and women: findings from the Netherlands Cohort Study. *J Epidemiol Community Health*. 2019; 73: 239–249. [PubMed: 30665909]

272. Altulea A, Rutten MGS, Verdijk LB, Demaria M. Sport and longevity: an observational study of international athletes. *Geroscience*. 2024; doi: 10.1007/s11357-024-01307-9 [PubMed: 39129051]

273. Zaccardi F, Rowlands AV, Dempsey PC, Razieh C, Henson J, Goldney J, Maylor BD, Bhattacharjee A, Chudasama Y, Edwardson C, Laukkonen JA, et al. Interplay between physical activity volume and intensity with modeled life expectancy in women and men: A prospective cohort analysis. *J Sport Health Sci*. 2024; 14: 100970 doi: 10.1016/j.jshs.2024.100970 [PubMed: 39181446]

274. Lee IM, Skerrett PJ. Physical activity and all-cause mortality: what is the dose-response relation?. *Med Sci Sports Exerc*. 2001; 33: S459–471. [PubMed: 11427772]

275. Lear SA, Hu W, Rangarajan S, Gasevic D, Leong D, Iqbal R, Casanova A, Swaminathan S, Anjana RM, Kumar R, Rosengren A, et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. *Lancet*. 2017; 390: 2643–2654. [PubMed: 28943267]

276. Lopez-Bueno R, Ahmadi M, Stamatakis E, Yang L, Del Pozo Cruz B. Prospective Associations of Different Combinations of Aerobic and Muscle-Strengthening Activity With All-Cause, Cardiovascular, and Cancer Mortality. *JAMA Intern Med*. 2023; 183: 982–990. DOI: 10.1001/jamainternmed.2023.3093 [PubMed: 37548973]

277. Schwenderger F, Infanger D, Lichtenstein E, Hinrichs T, Knaier R, Rowlands AV, Schmidt-Trucksass A. Intensity or volume: the role of physical activity in longevity. *Eur J Prev Cardiol*. 2025; 32: 10–19. [PubMed: 39276370]

278. Zaccardi F, Rowlands AV, Dempsey PC, Razieh C, Henson J, Goldney J, Maylor BD, Bhattacharjee A, Chudasama Y, Edwardson C, Laukkonen JA, et al. Interplay between physical activity volume and intensity with modeled life expectancy in women and men: A prospective cohort analysis. *Journal of Sport and Health Science*. 2024.

279. Lee IM, Paffenbarger RS Jr. Associations of light, moderate, and vigorous intensity physical activity with longevity. The Harvard Alumni Health Study. *Am J Epidemiol*. 2000; 151: 293–299. [PubMed: 10670554]

280. Roberts WC. An agent with lipid-lowering, antihypertensive, positive inotropic, negative chronotropic, vasodilating, diuretic, anorexigenic, weight-reducing, cathartic, hypoglycemic, tranquilizing, hypnotic and antidepressive qualities. *Am J Cardiol*. 1984; 53: 261–262. [PubMed: 6691271]

281. Veerman L, Tarp J, Wijaya R, Wanjau MN, Moller H, Haigh F, Lucas P, Milat A. Physical activity and life expectancy: a life-table analysis. *Br J Sports Med*. 2024. [PubMed: 39542739]

282. Ruegsegger GN, Booth FW. Health Benefits of Exercise. *Cold Spring Harb Perspect Med*. 2018; 8 doi: 10.1101/cshperspect.a029694 [PubMed: 28507196]

283. Hsu B, Merom D, Blyth FM, Naganathan V, Hirani V, Le Couteur DG, Seibel MJ, Waite LM, Handelman DJ, Cumming RG. Total Physical Activity, Exercise Intensity, and Walking Speed as Predictors of All-Cause and Cause-Specific Mortality Over 7 Years in Older Men: The Concord Health and Aging in Men Project. *J Am Med Dir Assoc*. 2018; 19: 216–222. [PubMed: 28993048]

284. Lee IM, Hsieh CC, Paffenbarger RS Jr. Exercise intensity and longevity in men. The Harvard Alumni Health Study. *JAMA*. 1995; 273: 1179–1184. [PubMed: 7707624]

285. Saint-Maurice PF, Graubard BI, Troiano RP, Berrigan D, Galuska DA, Fulton JE, Matthews CE. Estimated Number of Deaths Prevented Through Increased Physical Activity Among US Adults. *JAMA Intern Med*. 2022; 182: 349–352. DOI: 10.1001/jamainternmed.2021.7755 [PubMed: 35072698]

286. Powell KE, Thompson PD, Caspersen CJ, Kendrick JS. Physical activity and the incidence of coronary heart disease. *Annu Rev Public Health*. 1987; 8: 253–287. [PubMed: 3555525]

287. Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. *Eur J Cardiovasc Prev Rehabil*. 2008; 15: 239–246. [PubMed: 18525377]

288. Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. *Circulation*. 2011; 124: 789–795. DOI: 10.1161/CIRCULATIONAHA.110.010710 [PubMed: 21810663]

289. Jeong SW, Kim SH, Kang SH, Kim HJ, Yoon CH, Youn TJ, Chae IH. Mortality reduction with physical activity in patients with and without cardiovascular disease. *Eur Heart J*. 2019; 40: 3547–3555. DOI: 10.1093/eurheartj/ehz564 [PubMed: 31504416]

290. Lee JY, Ryu S, Cheong E, Sung KC. Association of Physical Activity and Inflammation With All-Cause, Cardiovascular-Related, and Cancer-Related Mortality. *Mayo Clin Proc*. 2016; 91: 1706–1716. [PubMed: 27776840]

291. Martinez-Gomez D, Luo M, Huang Y, Rodriguez-Artalejo F, Ekelund U, Sotos-Prieto M, Ding D, Lao XQ, Cabanas-Sanchez V. Physical Activity and All-Cause Mortality by Age in 4 Multinational Megacohorts. *JAMA Netw Open*. 2024; 7 e2446802 doi: 10.1001/jamanetworkopen.2024.46802 [PubMed: 39570587]

292. Oguma Y, Sesso HD, Paffenbarger RS Jr, Lee IM. Physical activity and all cause mortality in women: a review of the evidence. *Br J Sports Med*. 2002; 36: 162–172. DOI: 10.1136/bjsm.36.3.162 [PubMed: 12055109]

293. Kushi LH, Fee RM, Folsom AR, Mink PJ, Anderson KE, Sellers TA. Physical activity and mortality in postmenopausal women. *JAMA*. 1997; 277: 1287–1292. [PubMed: 9109466]

294. Tipton CM. The history of “Exercise Is Medicine” in ancient civilizations. *Adv Physiol Educ*. 2014; 38: 109–117. DOI: 10.1152/advan.00136.2013 [PubMed: 25039081]

295. Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrao ME, McAdam JS, O'Bryan SM, Ramos S, Roberts LM, et al. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. *Compr Physiol*. 2022; 12: 3193–3279. DOI: 10.1002/cphy.c200033 [PubMed: 35578962]

296. Furrer R, Hawley JA, Handschin C. The molecular athlete: exercise physiology from mechanisms to medals. *Physiol Rev*. 2023; 103: 1693–1787. DOI: 10.1152/physrev.00017.2022 [PubMed: 36603158]

297. Qiu Y, Fernandez-Garcia B, Lehmann HI, Li G, Kroemer G, Lopez-Otin C, Xiao J. Exercise sustains the hallmarks of health. *J Sport Health Sci*. 2023; 12: 8–35. DOI: 10.1016/j.jshs.2022.10.003 [PubMed: 36374766]

298. Rebelo-Marques A, De Sousa Lages A, Andrade R, Ribeiro CF, Mota-Pinto A, Carrilho F, Espregueira-Mendes J. Aging Hallmarks: The Benefits of Physical Exercise. *Front Endocrinol (Lausanne)*. 2018; 9: 258. doi: 10.3389/fendo.2018.00258 [PubMed: 29887832]

299. Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuzá-Luces C, Moran M, Emanuele E, Joyner MJ, Lucia A. Exercise attenuates the major hallmarks of aging. *Rejuvenation Res*. 2015; 18: 57–89. DOI: 10.1089/rej.2014.1623 [PubMed: 25431878]

300. Goh J, Wong E, Soh J, Maier AB, Kennedy BK. Targeting the molecular & cellular pillars of human aging with exercise. *FEBS J*. 2023; 290: 649–668. [PubMed: 34968001]

301. Lefferts WK, Davis MM, Valentine RJ. Exercise as an Aging Mimetic: A New Perspective on the Mechanisms Behind Exercise as Preventive Medicine Against Age-Related Chronic Disease. *Front Physiol*. 2022; 13 866792 doi: 10.3389/fphys.2022.866792 [PubMed: 36045751]

302. Franklin BA. Preventing exercise-related cardiovascular events: is a medical examination more urgent for physical activity or inactivity?. *Circulation*. 2014; 129: 1081–1084. [PubMed: 24421369]

303. Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. *Scand J Med Sci Sports*. 2015; 25 (Suppl 3) 1–72. [PubMed: 26606383]

304. Pedersen BK. The Physiology of Optimizing Health with a Focus on Exercise as Medicine. *Annu Rev Physiol*. 2019; 81: 607–627. [PubMed: 30526319]

305. Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. *BMJ*. 2013; 347 f5577 doi: 10.1136/bmj.f5577 [PubMed: 24473061]

306. Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. *Physiol Rev*. 2017; 97: 1351–1402. DOI: 10.1152/physrev.00019.2016 [PubMed: 28814614]

307. Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomas AM, Galdino de Oliveira TC, Soares FC, de Macedo L, Jardim NYV, Bento-Torres NVO, Anthony DC, et al. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. *Int J Mol Sci*. 2024; 25 doi: 10.3390/ijms251910757 [PubMed: 39409085]

308. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, Lancet Physical Activity Series Working G. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. *Lancet*. 2012; 380: 219–229. DOI: 10.1016/S0140-6736(12)61031-9 [PubMed: 22818936]

309. Wen CP, Wu X. Stressing harms of physical inactivity to promote exercise. *Lancet*. 2012; 380: 192–193. [PubMed: 22818933]

310. Blair SN, Kohl HW, Gordon NF, Paffenbarger RS Jr. How much physical activity is good for health?. *Annu Rev Public Health*. 1992; 13: 99–126. [PubMed: 1599603]

311. Shiroma EJ, Lee IM. Can we proceed with physical activity recommendations if (almost) no clinical trial data exist on mortality?. *Br J Sports Med*. 2018; 52: 888–889. DOI: 10.1136/bjsports-2018-099185 [PubMed: 29545235]

312. English LK, Ard JD, Bailey RL, Bates M, Bazzano LA, Boushey CJ, Brown C, Butera G, Callahan EH, de Jesus J, Mattes RD, et al. Evaluation of Dietary Patterns and All-Cause Mortality: A Systematic Review. *JAMA Netw Open*. 2021; 4 e2122277 doi: 10.1001/jamanetworkopen.2021.22277 [PubMed: 34463743]

313. Jayanama K, Theou O, Godin J, Cahill L, Shivappa N, Hebert JR, Wirth MD, Park YM, Fung TT, Rockwood K. Relationship between diet quality scores and the risk of frailty and mortality in adults across a wide age spectrum. *BMC Med*. 2021; 19: 64. doi: 10.1186/s12916-021-01918-5 [PubMed: 33722232]

314. Brandhorst S, Longo VD. Protein Quantity and Source, Fasting-Mimicking Diets, and Longevity. *Adv Nutr*. 2019; 10: S340–S350. DOI: 10.1093/advances/nmz079 [PubMed: 31728501]

315. Ardisson Korat AV, Shea MK, Jacques PF, Sebastiani P, Wang M, Eliassen AH, Willett WC, Sun Q. Dietary protein intake in midlife in relation to healthy aging - results from the prospective Nurses' Health Study cohort. *Am J Clin Nutr*. 2024; 119: 271–282. DOI: 10.1016/j.jn.2023.11.010 [PubMed: 38309825]

316. Deane CS, Cox J, Atherton PJ. Critical variables regulating age-related anabolic responses to protein nutrition in skeletal muscle. *Front Nutr*. 2024; 11 1419229 doi: 10.3389/fnut.2024.1419229 [PubMed: 39166128]

317. Krok-Schoen JL, Archdeacon Price A, Luo M, Kelly OJ, Taylor CA. Low Dietary Protein Intakes and Associated Dietary Patterns and Functional Limitations in an Aging Population: A NHANES analysis. *J Nutr Health Aging*. 2019; 23: 338–347. DOI: 10.1007/s12603-019-1174-1 [PubMed: 30932132]

318. Kitada M, Ogura Y, Monno I, Koya D. The impact of dietary protein intake on longevity and metabolic health. *EBioMedicine*. 2019; 43: 632–640. DOI: 10.1016/j.ebiom.2019.04.005 [PubMed: 30975545]

319. Coelho-Junior HJ, Rodrigues B, Uchida M, Marzetti E. Low Protein Intake Is Associated with Frailty in Older Adults: A Systematic Review and Meta-Analysis of Observational Studies. *Nutrients*. 2018; 10 doi: 10.3390/nu10091334 [PubMed: 30235893]

320. Han M, Woo K, Kim K. Association of Protein Intake with Sarcopenia and Related Indicators Among Korean Older Adults: A Systematic Review and Meta-Analysis. *Nutrients*. 2024; 16 doi: 10.3390/nu16244350 [PubMed: 39770971]

321. Carballo-Casla A, Avesani CM, Beridze G, Ortola R, Garcia-Esquinas E, Lopez-Garcia E, Dai L, Dunk MM, Stenvinkel P, Lindholm B, Carrero JJ, et al. Protein Intake and Mortality in Older Adults With Chronic Kidney Disease. *JAMA Netw Open*. 2024; 7 e2426577 doi: 10.1001/jamanetworkopen.2024.26577 [PubMed: 39110456]

322. Strasser B, Volaklis K, Fuchs D, Burtscher M. Role of Dietary Protein and Muscular Fitness on Longevity and Aging. *Aging Dis*. 2018; 9: 119–132. DOI: 10.14336/AD.2017.0202 [PubMed: 29392087]

323. Hu FB. Diet strategies for promoting healthy aging and longevity: An epidemiological perspective. *J Intern Med*. 2024; 295: 508–531. DOI: 10.1111/joim.13728 [PubMed: 37867396]

324. Berger MM, Shenkin A, Schweinlin A, Amrein K, Augsburger M, Biesalski HK, Bischoff SC, Casaea MP, Gundogan K, Lepp HL, de Man AME, et al. ESPEN micronutrient guideline. *Clin Nutr*. 2022; 41: 1357–1424. [PubMed: 35365361]

325. González-Gil EM, Matta M, Morales Bernstein F, Cairat M, Nicolas G, Blanco J, Kliemann N, Bertazzi Levy R, Rauber F, Jacobs I, Al Nahas A, et al. Associations between degree of food processing and all-cause and cause-specific mortality: a multicentre prospective cohort analysis in 9 European countries. *The Lancet Regional Health - Europe*. 2025; 50 doi: 10.1016/j.lanepe.2024.101208 [PubMed: 39867840]

326. de Oliveira Otto MC, Anderson CAM, Dearborn JL, Ferranti EP, Mozaffarian D, Rao G, Wylie-Rosett J, Lichtenstein AH, American Heart Association Behavioral Change for Improving Health Factors Committee of the Council on L, Cardiometabolic H, Council on E, Prevention, Council on C, Stroke N, Council on Clinical C, and Stroke C. Dietary Diversity: Implications for Obesity Prevention in Adult Populations: A Science Advisory From the American Heart Association. *Circulation*. 2018; 138: e160–e168. DOI: 10.1161/CIR.0000000000000595 [PubMed: 30354383]

327. Snetselaar LG, de Jesus JM, DeSilva DM, Stoody EE. Dietary Guidelines for Americans, 2020–2025: Understanding the Scientific Process, Guidelines, and Key Recommendations. *Nutr Today*. 2021; 56: 287–295. DOI: 10.1097/NT.0000000000000512 [PubMed: 34987271]

328. Venkatesan P. Food is medicine: clinical trials show the health benefits of dietary interventions. *Nat Med*. 2024; 30: 916–919. [PubMed: 38589603]

329. Dmitrieva NI, Gagarin A, Liu D, Wu CO, Boehm M. Middle-age high normal serum sodium as a risk factor for accelerated biological aging, chronic diseases, and premature mortality. *EBioMedicine*. 2023; 87 104404 doi: 10.1016/j.ebiom.2022.104404 [PubMed: 36599719]

330. Fadnes LT, Celis-Morales C, Okland JM, Parra-Soto S, Livingstone KM, Ho FK, Pell JP, Balakrishna R, Javadi Arjmand E, Johansson KA, Haaland OA, et al. Life expectancy can increase by up to 10 years following sustained shifts towards healthier diets in the United Kingdom. *Nat Food*. 2023; 4: 961–965. DOI: 10.1038/s43016-023-00868-w [PubMed: 37985698]

331. Fadnes LT, Okland JM, Haaland OA, Johansson KA. Estimating impact of food choices on life expectancy: A modeling study. *PLoS Med*. 2022; 19 e1003889 doi: 10.1371/journal.pmed.1003889 [PubMed: 35134067]

332. Moradell A, Casajus JA, Moreno LA, Vicente-Rodriguez G. Perspectives on Diet and Exercise Interaction for Healthy Aging: Opportunities to Reduce Malnutrition Risk and Optimize Fitness. *Nutrients*. 2025; 17 doi: 10.3390/nu17030596 [PubMed: 39940452]

333. Rodgers GP, Collins FS. Precision Nutrition—the Answer to “What to Eat to Stay Healthy”. *JAMA*. 2020; 324: 735–736. [PubMed: 32766768]

334. Bailey RL, Stover PJ. Precision Nutrition: The Hype Is Exceeding the Science and Evidentiary Standards Needed to Inform Public Health Recommendations for Prevention of Chronic Disease. *Annu Rev Nutr*. 2023; 43: 385–407. DOI: 10.1146/annurev-nutr-061021-025153 [PubMed: 37603433]

335. Offord C. Misreported meals skew nutrition research data. *Science*. 2025; 387: 352. [PubMed: 39847636]
336. Stubbs RJ, Hopkins M. Predictive equation helps estimate misreporting of energy intakes in dietary surveys. *Nat Food*. 2025; 6: 8–9. [PubMed: 39806217]
337. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, Hazen N, Herman J, Adams Hillard PJ, Katz ES, Kheirandish-Gozal L, et al. National Sleep Foundation's updated sleep duration recommendations: final report. *Sleep Health*. 2015; 1: 233–243. [PubMed: 29073398]
338. Chaput JP, Dutil C, Featherstone R, Ross R, Giangregorio L, Saunders TJ, Janssen I, Poitras VJ, Kho ME, Ross-White A, Zankar S, et al. Sleep timing, sleep consistency, and health in adults: a systematic review. *Appl Physiol Nutr Metab*. 2020; 45: S232–S247. [PubMed: 33054339]
339. Bliwise DL, Young TB. The parable of parabola: what the U-shaped curve can and cannot tell us about sleep. *Sleep*. 2007; 30: 1614–1615. DOI: 10.1093/sleep/30.12.1614 [PubMed: 18246971]
340. Hossin MZ. From habitual sleep hours to morbidity and mortality: existing evidence, potential mechanisms, and future agenda. *Sleep Health*. 2016; 2: 146–153. [PubMed: 28923258]
341. Garbarino S, Lanteri P, Durando P, Magnavita N, Sannita WG. Co-Morbidity, Mortality, Quality of Life and the Healthcare/Welfare/Social Costs of Disordered Sleep: A Rapid Review. *Int J Environ Res Public Health*. 2016; 13 doi: 10.3390/ijerph13080831 [PubMed: 27548196]
342. Zheng NS, Annis J, Master H, Han L, Gleichauf K, Ching JH, Nasser M, Coleman P, Desine S, Ruderfer DM, Hernandez J, et al. Sleep patterns and risk of chronic disease as measured by long-term monitoring with commercial wearable devices in the All of Us Research Program. *Nat Med*. 2024; 30: 2648–2656. DOI: 10.1038/s41591-024-03155-8 [PubMed: 39030265]
343. Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. *Sleep*. 2010; 33: 585–592. DOI: 10.1093/sleep/33.5.585 [PubMed: 20469800]
344. Li H, Qian F, Han L, Feng W, Zheng D, Guo X, Zhang H. Association of healthy sleep patterns with risk of mortality and life expectancy at age of 30 years: a population-based cohort study. *QJM*. 2024; 117: 177–186. [PubMed: 37831896]
345. Robbins R, Quan SF, Weaver MD, Bormes G, Barger LK, Czeisler CA. Examining sleep deficiency and disturbance and their risk for incident dementia and all-cause mortality in older adults across 5 years in the United States. *Aging (Albany NY)*. 2021; 13: 3254–3268. DOI: 10.1863/aging.202591 [PubMed: 33570509]
346. Itani O, Jike M, Watanabe N, Kaneita Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. *Sleep Med*. 2017; 32: 246–256. [PubMed: 27743803]
347. Akerstedt T, Narusyte J, Alexanderson K, Svedberg P. Sleep Duration, Mortality, and Heredity-A Prospective Twin Study. *Sleep*. 2017; 40 [PubMed: 28977668]
348. Kohn S, Diamant A, Godneva A, Dhir R, Weinberger A, Reisner Y, Rossman H, Segal E. Phenome-wide associations of sleep characteristics in the Human Phenotype Project. *Nat Med*. 2025. [PubMed: 39870817]
349. Zhu H, Qin S, Wu M. Association between weekend catch-up sleep and cardiovascular disease: Evidence from the National Health and Nutrition Examination Surveys 2017-2018. *Sleep Health*. 2024; 10: 98–103. [PubMed: 38000943]
350. Hirohama K, Imura T, Hori T, Deguchi N, Mitsutake T, Tanaka R. The effects of nonpharmacological sleep hygiene on sleep quality in nonelderly individuals: A systematic review and network meta-analysis of randomized controlled trials. *PLoS One*. 2024; 19 e0301616 doi: 10.1371/journal.pone.0301616 [PubMed: 38837997]
351. Dolezal BA, Neufeld EV, Boland DM, Martin JL, Cooper CB. Interrelationship between Sleep and Exercise: A Systematic Review. *Adv Prev Med*. 2017; 2017 1364387 doi: 10.1155/2017/1364387 [PubMed: 28458924]
352. Giannaki CD, Sakkas GK, Hadjigeorgiou GM, Manconi M, Bargiolas P. Unfolding the role of exercise in the management of sleep disorders. *Eur J Appl Physiol*. 2024; 124: 2547–2560. DOI: 10.1007/s00421-024-05556-6 [PubMed: 39031176]
353. Windred DP, Burns AC, Lane JM, Olivier P, Rutter MK, Saxena R, Phillips AJK, Cain SW. Brighter nights and darker days predict higher mortality risk: A prospective analysis of personal

light exposure in >88,000 individuals. *Proc Natl Acad Sci U S A.* 2024; 121 e2405924121 doi: 10.1073/pnas.2405924121 [PubMed: 39405349]

354. Hayat SA, Luben R, Dalzell N, Moore S, Hogervorst E, Matthews FE, Wareham N, Brayne C, Khaw KT. Understanding the relationship between cognition and death: a within cohort examination of cognitive measures and mortality. *Eur J Epidemiol.* 2018; 33: 1049–1062. DOI: 10.1007/s10654-018-0439-z [PubMed: 30203336]

355. Batty GD, Deary IJ, Zaninotto P. Association of Cognitive Function With Cause-Specific Mortality in Middle and Older Age: Follow-up of Participants in the English Longitudinal Study of Ageing. *Am J Epidemiol.* 2016; 183: 183–190. DOI: 10.1093/aje/kwv139 [PubMed: 26803665]

356. Wang Y, Li J, Qiu C. Lifespan Intellectual Factors, Genetic Susceptibility, and Cognitive Phenotypes in Aging: Implications for Interventions. *Front Aging Neurosci.* 2019; 11: 129. doi: 10.3389/fnagi.2019.00129 [PubMed: 31214016]

357. Liu H, Fan Y, Liang J, Hu A, Chen W, Wang H, Fan Y, Li M, Duan J, Wang Q. A causal relationship between sarcopenia and cognitive impairment: A Mendelian randomization study. *PLoS One.* 2024; 19 e0309124 doi: 10.1371/journal.pone.0309124 [PubMed: 39240885]

358. Li S, Wang P, Cai Z, Jiang W, Xin X, Wang X, Zhou X. Correlates of physical activity levels, muscle strength, working memory, and cognitive function in older adults. *Front Aging Neurosci.* 2023; 15 1283864 doi: 10.3389/fnagi.2023.1283864 [PubMed: 38161587]

359. Blackmore DG, Schaumberg MA, Ziae M, Belford S, To XV, O'Keeffe I, Bernard A, Mitchell J, Hume E, Rose GL, Shaw T, et al. Long-Term Improvement in Hippocampal-Dependent Learning Ability in Healthy, Aged Individuals Following High Intensity Interval Training. *Aging Dis.* 2024; doi: 10.14336/AD.2024.0642 [PubMed: 39012673]

360. Dupuy O, Ludyga S, Ortega FB, Hillman CH, Erickson KI, Herold F, Kamijo K, Wang CH, Morris TP, Brown B, Esteban-Cornejo I, et al. Do not underestimate the cognitive benefits of exercise. *Nat Hum Behav.* 2024; 8: 1460–1463. [PubMed: 39164416]

361. Ciria LF, Roman-Caballero R, Vadillo MA, Holgado D, Luque-Casado A, Perakakis P, Sanabria D. Reply to: Do not underestimate the cognitive benefits of exercise. *Nat Hum Behav.* 2024; 8: 1464–1466. [PubMed: 39164417]

362. Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. *Compr Physiol.* 2013; 3: 403–428. DOI: 10.1002/cphy.c110063 [PubMed: 23720292]

363. Yu Y, Wang J, Xu J. Optimal dose and type of exercise to improve cognitive function in patients with mild cognitive impairment: a systematic review and network meta-analysis of RCTs. *Front Psychiatry.* 2024; 15 1436499 doi: 10.3389/fpsy.2024.1436499 [PubMed: 39328348]

364. Gallardo-Gomez D, Del Pozo-Cruz J, Noetel M, Alvarez-Barbosa F, Alfonso-Rosa RM, Del Pozo Cruz B. Optimal dose and type of exercise to improve cognitive function in older adults: A systematic review and bayesian model-based network meta-analysis of RCTs. *Ageing Res Rev.* 2022; 76 101591 [PubMed: 35182742]

365. Zhang Y, DeFina LF, Leonard D, Chen B, Hebert ET, Barlow CE, Pavlovic A, Kohl HW 3rd. Associations of Muscle-Strengthening Activity and Cognitive Function in Community-Dwelling Middle-Aged and Older Adults. *J Aging Health.* 2024. 8982643241307757 [PubMed: 39676289]

366. Reparaz-Escudero I, Izquierdo M, Bischoff-Ferrari HA, Martinez-Lage P, Saez de Asteasu ML. Effect of long-term physical exercise and multidomain interventions on cognitive function and the risk of mild cognitive impairment and dementia in older adults: A systematic review with meta-analysis. *Ageing Res Rev.* 2024; 100 102463 [PubMed: 39179115]

367. Brodaty H, Chau T, Heffernan M, Ginige JA, Andrews G, Millard M, Sachdev PS, Anstey KJ, Lautenschlager NT, McNeil JJ, Jorm L, et al. An online multidomain lifestyle intervention to prevent cognitive decline in at-risk older adults: a randomized controlled trial. *Nat Med.* 2025. [PubMed: 39875685]

368. Wang W, Sun P, Lv T, Li M. The impact of modifiable health metrics on mortality for older adults with low cognitive function. *Front Public Health.* 2024; 12 1304876 doi: 10.3389/fpubh.2024.1304876 [PubMed: 38333737]

369. Halma M, Marik P, Gazda S, Tuszynski J. Lifestyle medicine for healthy cognitive aging: A narrative review. *Brain Behavior and Immunity Integrative.* 2024; 7

370. Tian Q, Greig EE, Davatzikos C, Landman BA, Resnick SM, Ferrucci L. Higher skeletal muscle mitochondrial oxidative capacity is associated with preserved brain structure up to over a decade. *Nat Commun.* 2024; 15: 10786 doi: 10.1038/s41467-024-55009-z [PubMed: 39737971]

371. Kelly NA, Wood KH, Allendorfer JB, Ford MP, Bickel CS, Marstrandner J, Amara AW, Anthony T, Bamman MM, Skidmore FM. High-Intensity Exercise Acutely Increases Substantia Nigra and Prefrontal Brain Activity in Parkinson's Disease. *Med Sci Monit.* 2017; 23: 6064–6071. DOI: 10.12659/MSM.906179 [PubMed: 29273705]

372. Zhan Y, Zhang Z, Lin S, Zhang K, Wu J, Xu H. Causal association of sarcopenia-related traits with brain cortical structure: a bidirectional Mendelian randomization study. *Aging Clin Exp Res.* 2025; 37: 57. doi: 10.1007/s40520-025-02977-x [PubMed: 40014117]

373. Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, Webb A, Jerome GJ, Marquez DX, Elavsky S. Cardiovascular fitness, cortical plasticity, and aging. *Proc Natl Acad Sci U S A.* 2004; 101: 3316–3321. DOI: 10.1073/pnas.0400266101 [PubMed: 14978288]

374. Ferrer-Uris B, Ramos MA, Busquets A, Angulo-Barroso R. Can exercise shape your brain? A review of aerobic exercise effects on cognitive function and neuro-physiological underpinning mechanisms. *AIMS Neurosci.* 2022; 9: 150–174. DOI: 10.3934/Neuroscience.2022009 [PubMed: 35860684]

375. Thomas AG, Dennis A, Bandettini PA, Johansen-Berg H. The effects of aerobic activity on brain structure. *Front Psychol.* 2012; 3: 86. doi: 10.3389/fpsyg.2012.00086 [PubMed: 22470361]

376. Erickson KI, Raji CA, Lopez OL, Becker JT, Rosano C, Newman AB, Gach HM, Thompson PM, Ho AJ, Kuller LH. Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. *Neurology.* 2010; 75: 1415–1422. DOI: 10.1212/WNL.0b013e3181f88359 [PubMed: 20944075]

377. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF. Aerobic exercise training increases brain volume in aging humans. *J Gerontol A Biol Sci Med Sci.* 2006; 61: 1166–1170. [PubMed: 17167157]

378. Ferrer-Ramos P, Garnacho-Castano MV, Girabent-Farres M, Faundez-Zanuy M, Serra-Paya N. Physical performance tests for preliminary cognitive screening in older adults: A systematic review of strength, walking, and balance assessments. *Arch Gerontol Geriatr.* 2025; 130: 105722 [PubMed: 39689382]

379. Jia YJ, Wang J, Ren JR, Chan P, Chen SD, Chen XC, Chhetri JK, Guo JH, Guo QH, Jin LJ, Liu Q, et al. A framework of biomarkers for brain aging: a consensus statement by the Aging Biomarker Consortium. *Life Medicine.* 2023; 2 doi: 10.1093/lifemed/lnad017 [PubMed: 39872296]

380. Walhovd KB, Lovden M, Fjell AM. Timing of lifespan influences on brain and cognition. *Trends Cogn Sci.* 2023; 27: 901–915. [PubMed: 37563042]

381. McCracken C, Raisi-Estabragh Z, Szabo L, Robson J, Raman B, Topiwala A, Roca-Fernandez A, Husain M, Petersen SE, Neubauer S, Nichols TE. NHS Health Check attendance is associated with reduced multiorgan disease risk: a matched cohort study in the UK Biobank. *BMC Med.* 2024; 22: 1. doi: 10.1186/s12916-023-03187-w [PubMed: 38254067]

382. Krogsboll LT, Jorgensen KJ, Gotzsche PC. General health checks in adults for reducing morbidity and mortality from disease. *Cochrane Database Syst Rev.* 2019; 1 CD009009 doi: 10.1002/14651858.CD009009.pub3 [PubMed: 30699470]

383. Shattock AJ, Johnson HC, Sim SY, Carter A, Lambach P, Hutubessy RCW, Thompson KM, Badizadegan K, Lambert B, Ferrari MJ, Jit M, et al. Contribution of vaccination to improved survival and health: modelling 50 years of the Expanded Programme on Immunization. *Lancet.* 2024; 403: 2307–2316. DOI: 10.1016/S0140-6736(24)00850-X [PubMed: 38705159]

384. Mendoza-Cano O, Trujillo X, Huerta M, Rios-Silva M, Guzman-Esquivel J, Lugo-Radillo A, Benites-Godinez V, Bricio-Barrios JA, Cardenas-Rojas MI, Rios-Bracamontes EF, Guzman-Solorzano HP, et al. Assessing the Influence of COVID-19 Vaccination Coverage on Excess Mortality across 178 Countries: A Cross-Sectional Study. *Vaccines (Basel).* 2023; 11 doi: 10.3390/vaccines11081294 [PubMed: 37631862]

385. Chang KC, Lee JT, Vamos EP, Soljak M, Johnston D, Khunti K, Majeed A, Millett C. Impact of the National Health Service Health Check on cardiovascular disease risk: a difference-

in-differences matching analysis. *CMAJ*. 2016; 188: E228–E238. DOI: 10.1503/cmaj.151201 [PubMed: 27141033]

386. Debiec R, Lawday D, Bountziouka V, Beeston E, Greengrass C, Bramley R, Sehmi S, Kharodia S, Newton M, Marshall A, Krzeminski A, et al. Evaluating the clinical effectiveness of the NHS Health Check programme: a prospective analysis in the Genetics and Vascular Health Check (GENVASC) study. *BMJ Open*. 2023; 13 e068025 doi: 10.1136/bmjopen-2022-068025 [PubMed: 37253489]

387. Alageel S, Gulliford MC. Health checks and cardiovascular risk factor values over six years' follow-up: Matched cohort study using electronic health records in England. *PLoS Med*. 2019; 16 e1002863 doi: 10.1371/journal.pmed.1002863 [PubMed: 31361740]

388. Border R, Corley RP, Brown SA, Hewitt JK, Hopfer CJ, McWilliams SK, Rhea SA, Shriver CL, Stallings MC, Wall TL, Woodward KE, et al. Independent predictors of mortality in adolescents ascertained for conduct disorder and substance use problems, their siblings and community controls. *Addiction*. 2018; 113: 2107–2115. DOI: 10.1111/add.14366 [PubMed: 30091161]

389. Tariq, N, Gupta, V. StatPearls. StatPearls Publishing; Treasure Island (FL): 2025. available from: <https://www.ncbi.nlm.nih.gov/books/NBK560756/>

390. Woolf SH, Schoomaker H. Life Expectancy and Mortality Rates in the United States, 1959–2017. *JAMA*. 2019; 322: 1996–2016. DOI: 10.1001/jama.2019.16932 [PubMed: 31769830]

391. Sakran JV, Lunardi N. Reducing Firearm Injury and Death in the United States. *Adv Surg*. 2022; 56: 49–67. [PubMed: 36096577]

392. Greenberg B, Bennett A, Naveed A, Petrut R, Wang SM, Vyas N, Bachari A, Khan S, Sue TC, Dryburgh N, Almoli F, et al. How firearm legislation impacts firearm mortality internationally: A scoping review. *Health Policy Open*. 2024; 7 100127 doi: 10.1016/j.hpopen.2024.100127 [PubMed: 39253617]

393. Naghavi M, Marczak LB, Kutz M, Shackelford KA, Arora M, Miller-Petrie M, Aichour MTE, Akseer N, Al-Raddadi RM, Alam K, Alghnam SA, et al. Global Mortality From Firearms, 1990–2016. *JAMA*. 2018; 320: 792–814. DOI: 10.1001/jama.2018.10060 [PubMed: 30167700]

394. Goldstick JE, Cunningham RM, Carter PM. Current Causes of Death in Children and Adolescents in the United States. *N Engl J Med*. 2022; 386: 1955–1956. DOI: 10.1056/NEJMc2201761 [PubMed: 35443104]

395. Roser, M. Why is life expectancy in the US lower than in other rich countries?. OurWorldinData.org; <https://ourworldindata.org/us-life-expectancy-low> [last accessed on 23.09.2024]

396. Collaborators GBDT. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. *Lancet*. 2017; 389: 1885–1906. DOI: 10.1016/S0140-6736(17)30819-X [PubMed: 28390697]

397. Collaborators GBDTF. Forecasting the effects of smoking prevalence scenarios on years of life lost and life expectancy from 2022 to 2050: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet Public Health*. 2024; 9: e729–e744. DOI: 10.1016/S2468-2667(24)00166-X [PubMed: 39366729]

398. Wensink M, Alvarez JA, Rizzi S, Janssen F, Lindahl-Jacobsen R. Progression of the smoking epidemic in high-income regions and its effects on male-female survival differences: a cohort-by-age analysis of 17 countries. *BMC Public Health*. 2020; 20: 39. doi: 10.1186/s12889-020-8148-4 [PubMed: 31924192]

399. Janssen F. Changing contribution of smoking to the sex differences in life expectancy in Europe, 1950–2014. *Eur J Epidemiol*. 2020; 35: 835–841. DOI: 10.1007/s10654-020-00602-x [PubMed: 31970573]

400. Rossow I, Amundsen A. Alcohol abuse and mortality: a 40-year prospective study of Norwegian conscripts. *Soc Sci Med*. 1997; 44: 261–267. [PubMed: 9015878]

401. Alpert HR, Slater ME, Yoon YH, Chen CM, Winstanley N, Esser MB. Alcohol Consumption and 15 Causes of Fatal Injuries: A Systematic Review and Meta-Analysis. *Am J Prev Med*. 2022; 63: 286–300. DOI: 10.1016/j.amepre.2022.03.025 [PubMed: 35581102]

402. Kim AM. Alcohol consumption and suicide rate: A cross-sectional analysis in 183 countries. *Psychiatry Res*. 2021; 295 113553 [PubMed: 33213937]

403. Hebert AH, Hill AL. Impact of opioid overdoses on US life expectancy and years of life lost, by demographic group and stimulant co-involvement: a mortality data analysis from 2019 to 2022. *Lancet Reg Health Am.* 2024; 36 100813 doi: 10.1016/j.lana.2024.100813 [PubMed: 38978785]

404. Tian F, Shen Q, Hu Y, Ye W, Valdimarsdottir UA, Song H, Fang F. Association of stress-related disorders with subsequent risk of all-cause and cause-specific mortality: A population-based and sibling-controlled cohort study. *Lancet Reg Health Eur.* 2022; 18 100402 doi: 10.1016/j.lanepe.2022.100402 [PubMed: 35663363]

405. Rutters F, Pilz S, Koopman AD, Rauh SP, Te Velde SJ, Stehouwer CD, Elders PJ, Nijpels G, Dekker JM. The association between psychosocial stress and mortality is mediated by lifestyle and chronic diseases: the Hoorn Study. *Soc Sci Med.* 2014; 118: 166–172. [PubMed: 25137635]

406. Prior A, Fenger-Gron M, Larsen KK, Larsen FB, Robinson KM, Nielsen MG, Christensen KS, Mercer SW, Vestergaard M. The Association Between Perceived Stress and Mortality Among People With Multimorbidity: A Prospective Population-Based Cohort Study. *Am J Epidemiol.* 2016; 184: 199–210. [PubMed: 27407085]

407. Aldwin CM, Molitor NT, Avron S 3rd, Levenson MR, Molitor J, Igarashi H. Do Stress Trajectories Predict Mortality in Older Men? Longitudinal Findings from the VA Normative Aging Study. *J Aging Res.* 2011; 2011 896109 doi: 10.4061/2011/896109 [PubMed: 21961066]

408. Yoon ES, So WY, Jang S. Association between Perceived Psychological Stress and Exercise Behaviors: A Cross-Sectional Study Using the Survey of National Physical Fitness. *Life (Basel).* 2023; 13 doi: 10.3390/life13102059 [PubMed: 37895440]

409. Koga HK, Trudel-Fitzgerald C, Lee LO, James P, Kroenke C, Garcia L, Shadyab AH, Salmoirago-Blotcher E, Manson JE, Grodstein F, Kubzansky LD. Optimism, lifestyle, and longevity in a racially diverse cohort of women. *J Am Geriatr Soc.* 2022; 70: 2793–2804. DOI: 10.1111/jgs.17897 [PubMed: 35674052]

410. Lee LO, James P, Zevon ES, Kim ES, Trudel-Fitzgerald C, Spiro A, Grodstein F, Kubzansky LD. Optimism is associated with exceptional longevity in 2 epidemiologic cohorts of men and women. *Proc Natl Acad Sci U S A.* 2019; 116: 18357–18362. DOI: 10.1073/pnas.1900712116 [PubMed: 31451635]

411. Rozanski A, Bavishi C, Kubzansky LD, Cohen R. Association of Optimism With Cardiovascular Events and All-Cause Mortality: A Systematic Review and Meta-analysis. *JAMA Netw Open.* 2019; 2 e1912200 doi: 10.1001/jamanetworkopen.2019.12200 [PubMed: 31560385]

412. Ren J, Mao C. Social relationships and mortality. *Nat Hum Behav.* 2023; 7: 1249–1250. [PubMed: 37337096]

413. Holt-Lunstad J. Social Connection as a Public Health Issue: The Evidence and a Systemic Framework for Prioritizing the "Social" in Social Determinants of Health. *Annu Rev Public Health.* 2022; 43: 193–213. [PubMed: 35021021]

414. Poulin MJ, Brown SL, Dillard AJ, Smith DM. Giving to others and the association between stress and mortality. *Am J Public Health.* 2013; 103: 1649–1655. DOI: 10.2105/AJPH.2012.300876 [PubMed: 23327269]

415. Hawley LC. Loneliness and health. *Nat Rev Dis Primers.* 2022; 8: 22. [PubMed: 35422043]

416. Sidik SM. Why loneliness is bad for your health. *Nature.* 2024; 628: 22–24. [PubMed: 38570713]

417. Ye L, Bally E, Korenhof SA, Fierloos I, Alhambra-Borras T, Clough G, Raat H, van Grieken A. The association between loneliness and frailty among community-dwelling older adults in five European countries: a longitudinal study. *Age Ageing.* 2024; 53 doi: 10.1093/ageing/afae210 [PubMed: 39387493]

418. Lin HY, Lin YC, Chen LK, Hsiao FY. Untangling the Complex Interplay between Social Isolation, Anorexia, Sarcopenia, and Mortality: Insights from a Longitudinal Study. *J Nutr Health Aging.* 2023; 27: 797–805. [PubMed: 37960901]

419. Liang YY, Zhou M, He Y, Zhang W, Wu Q, Luo T, Zhang J, Jia F, Qi L, Ai S, Zhang J. Observational and genetic evidence disagree on the association between loneliness and risk of multiple diseases. *Nat Hum Behav.* 2024; 8: 2209–2221. DOI: 10.1038/s41562-024-01970-0 [PubMed: 39284978]

420. Alfredsson L, Armstrong BK, Butterfield DA, Chowdhury R, de Gruijl FR, Feelisch M, Garland CF, Hart PH, Hoel DG, Jacobsen R, Lindqvist PG, et al. Insufficient Sun Exposure Has

Become a Real Public Health Problem. *Int J Environ Res Public Health*. 2020; 17 doi: 10.3390/ijerph17145014 [PubMed: 32668607]

421. Weller RB. Sunlight: Time for a Rethink?. *J Invest Dermatol*. 2024; 144: 1724–1732. [PubMed: 38661623]

422. Stevenson AC, Clemens T, Pairo-Castineira E, Webb DJ, Weller RB, Dibben C. Higher ultraviolet light exposure is associated with lower mortality: An analysis of data from the UK biobank cohort study. *Health Place*. 2024; 89 103328 [PubMed: 39094281]

423. Breakell T, Kowalski I, Foerster Y, Kramer R, Erdmann M, Berking C, Hepp MV. Ultraviolet Filters: Dissecting Current Facts and Myths. *J Clin Med*. 2024; 13 doi: 10.3390/jcm13102986 [PubMed: 38792526]

424. Sander M, Sander M, Burbidge T, Beecker J. The efficacy and safety of sunscreen use for the prevention of skin cancer. *CMAJ*. 2020; 192: E1802–E1808. DOI: 10.1503/cmaj.201085 [PubMed: 33318091]

425. Global Burden of Disease USHDC. Life expectancy by county and educational attainment in the USA, 2000–19: an observational analysis. *Lancet Public Health*. 2025; doi: 10.1016/S2468-2667(24)00303-7 [PubMed: 39864447]

426. Stringhini S, Carmeli C, Jokela M, Avendano M, Muennig P, Guida F, Ricceri F, d'Errico A, Barros H, Bochud M, Chadeau-Hyam M, et al. Socioeconomic status and the 25 x 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women. *Lancet*. 2017; 389: 1229–1237. DOI: 10.1016/S0140-6736(16)32380-7 [PubMed: 28159391]

427. Mackenbach JP, Stirbu I, Roskam AJ, Schaap MM, Menvielle G, Leinsalu M, Kunst AE, European Union Working Group on Socioeconomic Inequalities in Health. Socioeconomic inequalities in health in 22 European countries. *N Engl J Med*. 2008; 358: 2468–2481. [PubMed: 18525043]

428. Hajat A, Kaufman JS, Rose KM, Siddiqi A, Thomas JC. Long-term effects of wealth on mortality and self-rated health status. *Am J Epidemiol*. 2011; 173: 192–200. DOI: 10.1093/aje/kwq348 [PubMed: 21059808]

429. Link BG, Phelan J. Social conditions as fundamental causes of disease. *J Health Soc Behav Spec* No: 80-94. 1995. [PubMed: 7560851]

430. Chetty R, Stepner M, Abraham S, Lin S, Scuderi B, Turner N, Bergeron A, Cutler D. The Association Between Income and Life Expectancy in the United States, 2001–2014. *JAMA*. 2016; 315: 1750–1766. DOI: 10.1001/jama.2016.4226 [PubMed: 27063997]

431. Marmot M. The Health Gap: The Challenge of an Unequal World: the argument. *Int J Epidemiol*. 2017; 46: 1312–1318. DOI: 10.1093/ije/dyx163 [PubMed: 28938756]

432. Magnan S. Social Determinants of Health 101 for Health Care: Five Plus Five. *NAM Perspectives*. 2017; 7 doi: 10.31478/202106c [PubMed: 34532697]

433. Hood CM, Gennuso KP, Swain GR, Catlin BB. County Health Rankings: Relationships Between Determinant Factors and Health Outcomes. *Am J Prev Med*. 2016; 50: 129–135. [PubMed: 26526164]

434. Stringhini S, Carmeli C, Jokela M, Avendano M, McCrory C, d'Errico A, Bochud M, Barros H, Costa G, Chadeau-Hyam M, Delpierre C, et al. Socioeconomic status, non-communicable disease risk factors, and walking speed in older adults: multi-cohort population based study. *BMJ*. 2018; 360 k1046 doi: 10.1136/bmj.k1046 [PubMed: 29572376]

435. Turrell G, Lynch JW, Leite C, Raghunathan T, Kaplan GA. Socioeconomic disadvantage in childhood and across the life course and all-cause mortality and physical function in adulthood: evidence from the Alameda County Study. *J Epidemiol Community Health*. 2007; 61: 723–730. DOI: 10.1136/jech.2006.050609 [PubMed: 17630374]

436. Belsky DW, Caspi A, Arseneault L, Corcoran DL, Domingue BW, Harris KM, Houts RM, Mill JS, Moffitt TE, Prinz J, Sugden K, et al. Genetics and the geography of health, behaviour and attainment. *Nat Hum Behav*. 2019; 3: 576–586. DOI: 10.1038/s41562-019-0562-1 [PubMed: 30962612]

437. Sud A, Horton RH, Hingorani AD, Tzoulaki I, Turnbull C, Houlston RS, Lucassen A. Realistic expectations are key to realising the benefits of polygenic scores. *BMJ*. 2023; 380 e073149 doi: 10.1136/bmj-2022-073149 [PubMed: 36854461]

438. McLoughlin GM, Salmon J. How Can We Equitably Scale-Up Physical Activity Interventions to Ensure Everyone Has Opportunities to Thrive?. *J Phys Act Health*. 2024; 21: 729–730. DOI: 10.1123/jpah.2024-0342 [PubMed: 38936804]

439. Harris D, Dlima SD, Gluchowski A, Hall A, Elliott E, Munford L. The effectiveness and acceptability of physical activity interventions amongst older adults with lower socioeconomic status: a mixed methods systematic review. *Int J Behav Nutr Phys Act*. 2024; 21: 121. doi: 10.1186/s12966-024-01666-8 [PubMed: 39438938]

440. Walensky RP, McCann NC. Challenges to the Future of a Robust Physician Workforce in the United States. *N Engl J Med*. 2025; 392: 286–295. [PubMed: 39813651]

441. Dieleman JL, Weil M, Beauchamp M, Bisignano C, Crosby SW, DeJarnatt D, Lescinsky H, Mokdad AH, Ostroff S, Paul H, Pollock I, et al. Drivers of Variation in Health Care Spending Across US Counties. *JAMA Health Forum*. 2025; 6 e245220 doi: 10.1001/jamahealthforum.2024.5220 [PubMed: 39951314]

442. Kruk ME, Gage AD, Joseph NT, Danaei G, Garcia-Saiso S, Salomon JA. Mortality due to low-quality health systems in the universal health coverage era: a systematic analysis of amenable deaths in 137 countries. *Lancet*. 2018; 392: 2203–2212. DOI: 10.1016/S0140-6736(18)31668-4 [PubMed: 30195398]

443. Access GBDH, Quality Collaborators. Electronic address cue, Access GBDH, and Quality C. Healthcare Access and Quality Index based on mortality from causes amenable to personal health care in 195 countries and territories, 1990–2015: a novel analysis from the Global Burden of Disease Study 2015. *Lancet*. 2017; 390: 231–266. DOI: 10.1016/S0140-6736(17)30818-8 [PubMed: 28528753]

444. Global Nutrition Target C. Global, regional, and national progress towards the 2030 global nutrition targets and forecasts to 2050: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet*. 2025; 404: 2543–2583. DOI: 10.1016/S0140-6736(24)01821-X [PubMed: 39667386]

445. Gunja MZ, Gumas ED, Williams RD II. U.S. Health Care from a Global Perspective, 2022: Accelerating Spending, Worsening Outcomes Commonwealth Fund. 2022.

446. Papanicolas I, Woskie LR, Jha AK. Health Care Spending in the United States and Other High-Income Countries. *JAMA*. 2018; 319: 1024–1039. [PubMed: 29536101]

447. Lorenzoni L, Belloni A, Sassi F. Health-care expenditure and health policy in the USA versus other high-spending OECD countries. *Lancet*. 2014; 384: 83–92. [PubMed: 24993914]

448. Blumenthal D, Gumas E, Shah A. The Failing U.S. Health System. *N Engl J Med*. 2024; 391: 1566–1568. [PubMed: 39383455]

449. Disease GUBo, and Forecasting C. Burden of disease scenarios by state in the USA, 2022–50: a forecasting analysis for the Global Burden of Disease Study 2021. *Lancet*. 2024; 404: 2341–2370. DOI: 10.1016/S0140-6736(24)02246-3 [PubMed: 39645377]

450. Collaborators GUBoD. The burden of diseases, injuries, and risk factors by state in the USA, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet*. 2024; 404: 2314–2340. DOI: 10.1016/S0140-6736(24)01446-6 [PubMed: 39645376]

451. Hoyert D. Maternal mortality rates in the United States, 2021. *NCHS Health E-Stats*. 2023. [PubMed: 39946528]

452. Murphy SL, Kochanek KD, Xu J, Arias E. Mortality in the United States, 2023. *NCHS Data Brief*. 2024; 1–13. DOI: 10.15620/cdc/170564 [PubMed: 39819663]

453. Woolf SH. Understanding disparities in life expectancy. *Lancet*. 2024; 404: 2243–2244. [PubMed: 39581201]

454. Dwyer-Lindgren L, Baumann MM, Li Z, Kelly YO, Schmidt C, Searchinger C, Motte-Kerr La, Bollyky TJ, Mokdad AH, Murray CJ. Ten Americas: a systematic analysis of life expectancy disparities in the USA. *Lancet*. 2024; 404: 2299–2313. DOI: 10.1016/S0140-6736(24)01495-8 [PubMed: 39581204]

455. The L. Health in the age of disinformation. *The Lancet*. 2025; 405 [PubMed: 39826957]

456. Niederdeppe J, Boyd AD, King AJ, Rimal RN. Strategies for Effective Public Health Communication in a Complex Information Environment. *Annu Rev Public Health*. 2024; [PubMed: 39656948]

457. Calleja-Agius J, England K, Calleja N. The effect of global warming on mortality. *Early Hum Dev*. 2021; 155: 105222 doi: 10.1016/j.earlhumdev.2020.105222 [PubMed: 33097356]

458. Luthi S, Fairless C, Fischer EM, Scovronick N, Ben A, Coelho M, Guo YL, Guo Y, Honda Y, Huber V, Kysely J, et al. Rapid increase in the risk of heat-related mortality. *Nat Commun*. 2023; 14: 4894 doi: 10.1038/s41467-023-40599-x [PubMed: 37620329]

459. Howard JT, Androne N, Alcover KC, Santos-Lozada AR. Trends of Heat-Related Deaths in the US, 1999–2023. *JAMA*. 2024; 332: 1203–1204. DOI: 10.1001/jama.2024.16386 [PubMed: 39186311]

460. Romanello M, Walawender M, Hsu SC, Moskeland A, Palmeiro-Silva Y, Scamman D, Ali Z, Ameli N, Angelova D, Ayeb-Karlsson S, Basart S, et al. The 2024 report of the Lancet Countdown on health and climate change: facing record-breaking threats from delayed action. *Lancet*. 2024; 404: 1847–1896. DOI: 10.1016/S0140-6736(24)01822-1 [PubMed: 39488222]

461. Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, Coelho M, Saldiva PHN, Lavigne E, Matus P, Valdes Ortega N, et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. *N Engl J Med*. 2019; 381: 705–715. DOI: 10.1056/NEJMoa1817364 [PubMed: 31433918]

462. Jian Y, Messer LC, Jagai JS, Rappazzo KM, Gray CL, Grabich SC, Lobdell DT. Associations between Environmental Quality and Mortality in the Contiguous United States, 2000–2005. *Environ Health Perspect*. 2017; 125: 355–362. DOI: 10.1289/EHP119 [PubMed: 27713110]

463. Drew L. Air pollution and brain damage: what the science says. *Nature*. 2025; 637: 536–538. [PubMed: 39809913]

464. Lee W, Choi HM, Kim D, Honda Y, Leon Guo YL, Kim H. Synergic effect between high temperature and air pollution on mortality in Northeast Asia. *Environ Res*. 2019; 178: 108735 [PubMed: 31539825]

465. Kozlov M. Landmark study links microplastics to serious health problems. *Nature*. 2024. [PubMed: 38448537]

466. Marfella R, Pratichizzo F, Sardu C, Fulgenzi G, Graciotti L, Spadoni T, D’Onofrio N, Scisciola L, La Grotta R, Frige C, Pellegrini V, et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. *N Engl J Med*. 2024; 390: 900–910. DOI: 10.1056/NEJMoa2309822 [PubMed: 38446676]

467. Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, et al. The Minderoo-Monaco Commission on Plastics and Human Health. *Ann Glob Health*. 2023; 89: 23. doi: 10.5334/aogh.4056 [PubMed: 36969097]

468. Thompson RC, Courtene-Jones W, Boucher J, Pahl S, Raubenheimer K, Koelmans AA. Twenty years of microplastic pollution research—what have we learned?. *Science*. 2024; 386: eadl2746 [PubMed: 39298564]

469. Kozlov M. Your brain is full of microplastics: are they harming you?. *Nature*. 2025; 638: 311–313. [PubMed: 39934326]

470. Fan Y, Tao C, Li Z, Huang Y, Yan W, Zhao S, Gao B, Xu Q, Qin Y, Wang X, Peng Z, et al. Association of Endocrine-Disrupting Chemicals with All-Cause and Cause-Specific Mortality in the U.S.: A Prospective Cohort Study. *Environ Sci Technol*. 2023; 57: 2877–2886. [PubMed: 36728834]

471. Cropper M, Dunlop S, Hinshaw H, Landrigan P, Park Y, Symeonides C. The benefits of removing toxic chemicals from plastics. *Proc Natl Acad Sci U S A*. 2024; 121: e2412714121 doi: 10.1073/pnas.2412714121 [PubMed: 39680769]

472. Thacher JD, Roswall N, Ogren M, Pyko A, Akesson A, Oudin A, Rosengren A, Poulsen AH, Eriksson C, Segersson D, Rizzuto D, et al. Residential exposure to transportation noise and risk of incident atrial fibrillation: a pooled study of 11 prospective Nordic cohorts. *Lancet Reg Health Eur*. 2024; 46: 101091 doi: 10.1016/j.lanepe.2024.101091 [PubMed: 39403081]

473. Sorensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Roosli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, et al. Health position paper and redox perspectives

- Disease burden by transportation noise. *Redox Biol.* 2024; 69 102995 doi: 10.1016/j.redox.2023.102995 [PubMed: 38142584]

474. Topriceanu CC, Gong X, Shah M, Shiwan H, Eminson K, Atilola GO, Jephcott C, Adams K, Blangiardo M, Moon JC, Hughes AD, et al. Higher Aircraft Noise Exposure Is Linked to Worse Heart Structure and Function by Cardiovascular MRI. *J Am Coll Cardiol.* 2024; doi: 10.1016/j.jacc.2024.09.1217 [PubMed: 39772360]

475. Panchin AY, Ogmén A, Blagodatski AS, Egorova A, Batin M, Glinin T. Targeting multiple hallmarks of mammalian aging with combinations of interventions. *Aging (Albany NY).* 2024; 16: 12073–12100. DOI: 10.18632/aging.206078 [PubMed: 39159129]

476. Handschin C. Caloric restriction and exercise “mimetics”: Ready for prime time?. *Pharmacol Res.* 2016; 103: 158–166. DOI: 10.1016/j.phrs.2015.11.009 [PubMed: 26658171]

477. Weihrauch M, Handschin C. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls. *Biochem Pharmacol.* 2018; 147: 211–220. DOI: 10.1016/j.bcp.2017.10.006 [PubMed: 29061342]

478. Gliemann L, Schmidt JF, Olesen J, Bienso RS, Peronard SL, Grandjean SU, Mortensen SP, Nyberg M, Bangsbo J, Pilegaard H, Hellsten Y. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. *J Physiol.* 2013; 591: 5047–5059. DOI: 10.1113/jphysiol.2013.258061 [PubMed: 23878368]

479. Scribbans TD, Ma JK, Edgett BA, Vorobej KA, Mitchell AS, Zelt JG, Simpson CA, Quadrilatero J, Gurd BJ. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans. *Appl Physiol Nutr Metab.* 2014; 39: 1305–1313. [PubMed: 25211703]

480. Martinez-Negrín G, Acton JP, Cocksedge SP, Bailey SJ, Clifford T. The effect of dietary (poly)phenols on exercise-induced physiological adaptations: A systematic review and meta-analysis of human intervention trials. *Crit Rev Food Sci Nutr.* 2022; 62: 2872–2887. [PubMed: 33356471]

481. Konopka AR, Laurin JL, Schoenberg HM, Reid JJ, Castor WM, Wolff CA, Musci RV, Safarad OD, Linden MA, Biela LM, Bailey SM, et al. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. *Aging Cell.* 2019; 18 e12880 doi: 10.1111/acel.12880 [PubMed: 30548390]

482. Moreno-Cabanás A, Morales-Palomo F, Alvarez-Jiménez L, Ortega JF, Mora-Rodríguez R. Effects of chronic metformin treatment on training adaptations in men and women with hyperglycemia: A prospective study. *Obesity (Silver Spring).* 2022; 30: 1219–1230. DOI: 10.1002/oby.23410 [PubMed: 35578807]

483. Kulkarni AS, Peck BD, Walton RG, Kern PA, Mar JC, Windham ST, Bamman MM, Barzilai N, Peterson CA. Metformin alters skeletal muscle transcriptome adaptations to resistance training in older adults. *Aging (Albany NY).* 2020; 12: 19852–19866. DOI: 10.18632/aging.104096 [PubMed: 33071237]

484. Walton RG, Dungan CM, Long DE, Tugge SC, Kosmac K, Peck BD, Bush HM, Villasante Tezanos AG, McGwin G, Windham ST, Ovalle F, et al. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial. *Aging Cell.* 2019; 18 e13039 doi: 10.1111/acel.13039 [PubMed: 31557380]

485. Pilmark NS, Petersen-Bonding C, Holm NFR, Johansen MY, Pedersen BK, Hansen KB, Karstoft K. The Effect of Metformin on Self-Selected Exercise Intensity in Healthy, Lean Males: A Randomized, Crossover, Counterbalanced Trial. *Front Endocrinol (Lausanne).* 2021; 12 599164 doi: 10.3389/fendo.2021.599164 [PubMed: 33716963]

486. Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. *Curr Opin Clin Nutr Metab Care.* 2014; 17: 40–44. [PubMed: 24241129]

487. Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M. Antioxidants prevent health-promoting effects of physical exercise in humans. *Proc Natl Acad Sci U S A.* 2009; 106: 8665–8670. DOI: 10.1073/pnas.0903485106 [PubMed: 19433800]

488. Teixeira VH, Valente HF, Casal SI, Marques AF, Moreira PA. Antioxidants do not prevent postexercise peroxidation and may delay muscle recovery. *Med Sci Sports Exerc.* 2009; 41: 1752–1760. [PubMed: 19657294]

489. Dutra MT, Alex S, Mota MR, Sales NB, Brown LE, Bottaro M. Effect of strength training combined with antioxidant supplementation on muscular performance. *Appl Physiol Nutr Metab.* 2018; 43: 775–781. [PubMed: 29939770]

490. Higgins MR, Izadi A, Kaviani M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. *Int J Environ Res Public Health.* 2020; 17 doi: 10.3390/ijerph17228452 [PubMed: 33203106]

491. Yu J, Laybutt DR, Kim LJ, Quek LE, Wu LE, Morris MJ, Youngson NA. Exercise-induced benefits on glucose handling in a model of diet-induced obesity are reduced by concurrent nicotinamide mononucleotide. *Am J Physiol Endocrinol Metab.* 2021; 321: E176–E189. [PubMed: 34121447]

492. Nadeeshani H, Li J, Ying T, Zhang B, Lu J. Nicotinamide mononucleotide (NMN) as an anti-aging health product - Promises and safety concerns. *J Adv Res.* 2022; 37: 267–278. DOI: 10.1016/j.jare.2021.08.003 [PubMed: 35499054]

493. Palmer RD, Vaccarezza M. Nicotinamide adenine dinucleotide and the sirtuins caution: Pro-cancer functions. *Aging Med (Milton).* 2021; 4: 337–344. DOI: 10.1002/agm2.12184 [PubMed: 34964015]

494. Saleh TA, Whitson JA, Keiser P, Prasad P, Jenkins BC, Sodeinde T, Mann C, Rabinovitch PS, McReynolds MR, Sweetwyne MT. Metabolite accumulation from oral NMN supplementation drives aging-specific kidney inflammation. *bioRxiv.* 2024.

495. Bodine SC. The role of mTORC1 in the regulation of skeletal muscle mass. *Fac Rev.* 2022; 11: 32. doi: 10.12703/r/11-32 [PubMed: 36532707]

496. Lim C, Nunes EA, Currier BS, McLeod JC, Thomas ACQ, Phillips SM. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy. *Med Sci Sports Exerc.* 2022; 54: 1546–1559. DOI: 10.1249/MSS.0000000000002929 [PubMed: 35389932]

497. Ogasawara R, Jensen TE, Goodman CA, Hornberger TA. Resistance Exercise-Induced Hypertrophy: A Potential Role for Rapamycin-Insensitive mTOR. *Exerc Sport Sci Rev.* 2019; 47: 188–194. DOI: 10.1249/JES.0000000000000189 [PubMed: 30870215]

498. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. *Nat Cell Biol.* 2001; 3: 1014–1019. [PubMed: 11715023]

499. Ogasawara R, Fujita S, Hornberger TA, Kitaoka Y, Makanae Y, Nakazato K, Naokata I. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. *Sci Rep.* 2016; 6 31142 doi: 10.1038/srep31142 [PubMed: 27502839]

500. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. *J Physiol.* 2009; 587: 1535–1546. DOI: 10.1113/jphysiol.2008.163816 [PubMed: 19188252]

501. Furrer R, Handschin C. Molecular aspects of the exercise response and training adaptation in skeletal muscle. *Free Radic Biol Med.* 2024; 223: 53–68. DOI: 10.1016/j.freeradbiomed.2024.07.026 [PubMed: 39059515]

502. Hawley JA, Joyner MJ, Green DJ. Mimicking exercise: what matters most and where to next?. *J Physiol.* 2021; 599: 791–802. DOI: 10.1113/JP278761 [PubMed: 31749163]

503. Hawley JA, Holloszy JO. Exercise: it's the real thing!. *Nutr Rev.* 2009; 67: 172–178. [PubMed: 19239632]

504. Davies RW, Lynch AE, Kumar U, Jakeman PM. Characterisation of the Muscle Protein Synthetic Response to Resistance Exercise in Healthy Adults: A Systematic Review and Exploratory Meta-Analysis. *Transl Sports Med.* 2024; 2024 3184356 doi: 10.1155/2024/3184356 [PubMed: 38716482]

505. Trommelen J, van Lieshout GAA, Nyakayiru J, Holwerda AM, Smeets JSJ, Hendriks FK, van Kranenburg JMX, Zorenc AH, Senden JM, Goessens JPB, Gijsen AP, et al. The anabolic response to protein ingestion during recovery from exercise has no upper limit in magnitude and duration in vivo in humans. *Cell Rep Med*. 2023; 4 101324 doi: 10.1016/j.xcrm.2023.101324 [PubMed: 38118410]

506. Gems D. The aging-disease false dichotomy: understanding senescence as pathology. *Front Genet*. 2015; 6: 212. doi: 10.3389/fgene.2015.00212 [PubMed: 26136770]

507. Moqri M, Herzog C, Poganik JR, Biomarkers of Aging C, Justice J, Belsky DW, Higgins-Chen A, Moskalev A, Fuellen G, Cohen AA, Bautmans I, et al. Biomarkers of aging for the identification and evaluation of longevity interventions. *Cell*. 2023; 186: 3758–3775. DOI: 10.1016/j.cell.2023.08.003 [PubMed: 37657418]

508. Jylhava J, Pedersen NL, Hagg S. Biological Age Predictors. *EBioMedicine*. 2017; 21: 29–36. DOI: 10.1016/j.ebiom.2017.03.046 [PubMed: 28396265]

509. Rutledge J, Oh H, Wyss-Coray T. Measuring biological age using omics data. *Nat Rev Genet*. 2022; 23: 715–727. DOI: 10.1038/s41576-022-00511-7 [PubMed: 35715611]

510. Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. *Adv Biol (Weinh)*. 2024; 8 e2400079 [PubMed: 38935557]

511. Chen R, Wang Y, Zhang S, Bulloch G, Zhang J, Liao H, Shang X, Clark M, Peng Q, Ge Z, Cheng CY, et al. Biomarkers of ageing: Current state-of-art, challenges, and opportunities. *MedComm – Future Medicine*. 2023; 2

512. Han JJ. The ticking of aging clocks. *Trends Endocrinol Metab*. 2024; 35: 11–22. [PubMed: 37880054]

513. Palmer RD. Aging clocks & mortality timers, methylation, glycomics, telomeric and more. A window to measuring biological age. *Aging Med (Milton)*. 2022; 5: 120–125. DOI: 10.1002/agm2.12197 [PubMed: 35783114]

514. Tao X, Zhu Z, Wang L, Li C, Sun L, Wang W, Gong W. Biomarkers of Aging and Relevant Evaluation Techniques: A Comprehensive Review. *Aging Dis*. 2024; 15: 977–1005. DOI: 10.14336/AD.2023.00808-1 [PubMed: 37611906]

515. Wagner KH, Cameron-Smith D, Wessner B, Franzke B. Biomarkers of Aging: From Function to Molecular Biology. *Nutrients*. 2016; 8 doi: 10.3390/nu8060338 [PubMed: 27271660]

516. Ferrucci L, Gonzalez-Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, Salimi S, Sierra F, de Cabo R. Measuring biological aging in humans: A quest. *Aging Cell*. 2020; 19 e13080 doi: 10.1111/acel.13080 [PubMed: 31833194]

517. de Lima Camillo LP, Asif MH, Horvath S, Larschan E, Singh R. Histone mark age of human tissues and cell types. *Sci Adv*. 2025; 11 eadk9373 doi: 10.1126/sciadv.adk9373 [PubMed: 39742485]

518. Oh HS, Rutledge J, Nachun D, Palovics R, Abiose O, Moran-Losada P, Channappa D, Urey DY, Kim K, Sung YJ, Wang L, et al. Organ aging signatures in the plasma proteome track health and disease. *Nature*. 2023; 624: 164–172. DOI: 10.1038/s41586-023-06802-1 [PubMed: 38057571]

519. Goeminne LJE, Eames A, Tyshkovskiy A, Argentieri MA, Ying K, Moqri M, Gladyshev VN. Plasma-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems. *medRxiv*. 2024. [PubMed: 39488213]

520. Carrasco-Zanini J, Pietzner M, Davitte J, Surendran P, Croteau-Chonka DC, Robins C, Torralbo A, Tomlinson C, Grunschlager F, Fitzpatrick N, Ytsma C, et al. Proteomic signatures improve risk prediction for common and rare diseases. *Nat Med*. 2024; 30: 2489–2498. DOI: 10.1038/s41591-024-03142-z [PubMed: 39039249]

521. Argentieri MA, Xiao S, Bennett D, Winchester L, Nevado-Holgado AJ, Ghose U, Albukhari A, Yao P, Mazidi M, Lv J, Millwood I, et al. Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations. *Nat Med*. 2024; 30: 2450–2460. DOI: 10.1038/s41591-024-03164-7 [PubMed: 39117878]

522. Carrasco-Zanini J, Pietzner M, Koprulu M, Wheeler E, Kerrison ND, Wareham NJ, Langenberg C. Proteomic prediction of diverse incident diseases: a machine learning-guided biomarker

discovery study using data from a prospective cohort study. *Lancet Digit Health.* 2024; 6: e470–e479. [PubMed: 38906612]

523. Lehallier B, Gate D, Schaum N, Nanasi T, Lee SE, Yousef H, Moran Losada P, Berdnik D, Keller A, Verghese J, Sathyan S, et al. Undulating changes in human plasma proteome profiles across the lifespan. *Nat Med.* 2019; 25: 1843–1850. DOI: 10.1038/s41591-019-0673-2 [PubMed: 31806903]

524. Shen X, Wang C, Zhou X, Zhou W, Hornburg D, Wu S, Snyder MP. Nonlinear dynamics of multi-omics profiles during human aging. *Nat Aging.* 2024; 4: 1619–1634. DOI: 10.1038/s43587-024-00692-2 [PubMed: 39143318]

525. Williams SA, Kivimaki M, Langenberg C, Hingorani AD, Casas JP, Bouchard C, Jonasson C, Sarzynski MA, Shipley MJ, Alexander L, Ash J, et al. Plasma protein patterns as comprehensive indicators of health. *Nat Med.* 2019; 25: 1851–1857. DOI: 10.1038/s41591-019-0665-2 [PubMed: 31792462]

526. Guo Y, You J, Zhang Y, Liu WS, Huang YY, Zhang YR, Zhang W, Dong Q, Feng JF, Cheng W, Yu JT. Plasma proteomic profiles predict future dementia in healthy adults. *Nat Aging.* 2024; 4: 247–260. [PubMed: 38347190]

527. Carrasco-Zanini J, Wheeler E, Uluvar B, Kerrison N, Koprulu M, Wareham NJ, Pietzner M, Langenberg C. Mapping biological influences on the human plasma proteome beyond the genome. *Nat Metab.* 2024; 6: 2010–2023. DOI: 10.1038/s42255-024-01133-5 [PubMed: 39327534]

528. Lind L, Mazidi M, Clarke R, Bennett DA, Zheng R. Measured and genetically predicted protein levels and cardiovascular diseases in UK Biobank and China Kadoorie Biobank. *Nat Cardiovasc Res.* 2024; 3: 1189–1198. DOI: 10.1038/s44161-024-00545-6 [PubMed: 39322770]

529. Oh HS, Le Guen Y, Rappoport N, Urey DY, Rutledge J, Brunet A, Greicius MD, Wyss-Coray T. Plasma proteomics in the UK Biobank reveals youthful brains and immune systems promote healthspan and longevity. *bioRxiv.* 2024.

530. Kivimäki M, Frank P, Pentti J, Jokela M, Nyberg ST, Blake A, Lindbohm JV, Oh HS-H, Singh-Manoux A, Wyss-Coray T, Partridge L. Proteomic organ-specific ageing signatures and 20-year risk of age-related diseases: the Whitehall II observational cohort study. *The Lancet Digital Health.* 2025; 7: e195–e204. [PubMed: 40015764]

531. Topol EJ. The revolution in high-throughput proteomics and AI. *Science.* 2024; 385 eads5749 [PubMed: 39325883]

532. Franks PW, Coral DE. Causal drivers of human proteome variation in health and disease. *Nat Metab.* 2024; 6: 1854–1855. [PubMed: 39327533]

533. Huang H, Chen Y, Xu W, Cao L, Qian K, Bischof E, Kennedy BK, Pu J. Decoding aging clocks: New insights from metabolomics. *Cell Metab.* 2025; 37: 34–58. [PubMed: 39657675]

534. Yao S, Colangelo LA, Perry AS, Marron MM, Yaffe K, Sedaghat S, Lima JAC, Tian Q, Clish CB, Newman AB, Shah RV, et al. Implications of metabolism on multi-systems healthy aging across the lifespan. *Aging Cell.* 2024; 23 e14090 doi: 10.1111/ace.14090 [PubMed: 38287525]

535. Vaiserman A, Krasnienkov D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. *Front Genet.* 2020; 11 630186 doi: 10.3389/fgene.2020.630186 [PubMed: 33552142]

536. Daios S, Anogeianaki A, Kaiafa G, Kontana A, Veneti S, Gogou C, Karlafti E, Pilalas D, Kanellos I, Savopoulos C. Telomere Length as a Marker of Biological Aging: A Critical Review of Recent Literature. *Curr Med Chem.* 2022; 29: 5478–5495. [PubMed: 35838223]

537. Sehgal R, Borrus D, Kasamato J, Armstrong JF, Gonzalez J, Markov Y, Priyanka A, Smith R, Carreras N, Dwaraka VB, community DNab, community Longevity intervention s, and Higgins-Chen A. DNAm aging biomarkers are responsive: Insights from 51 longevity intervention studies in humans. *bioRxiv.* 2024.

538. Ying K, Paulson S, Reinhard J, de Lima Camillo LP, Trauble J, Jokiel S, Gobel D, Herzog C, Poganik JR, Moqri M, Biomarkers of Aging C. et al. An Open Competition for Biomarkers of Aging. *bioRxiv.* 2024.

539. Waziry R, Ryan CP, Corcoran DL, Huffman KM, Kobor MS, Kothari M, Graf GH, Kraus VB, Kraus WE, Lin DTS, Pieper CF, et al. Effect of long-term caloric restriction on DNA methylation

measures of biological aging in healthy adults from the CALERIE trial. *Nat Aging*. 2023; 3: 248–257. DOI: 10.1038/s43587-022-00357-y [PubMed: 37118425]

540. McEwen LM, Jones MJ, Lin DTS, Edgar RD, Husquin LT, MacIsaac JL, Ramadori KE, Morin AM, Rider CF, Carlsten C, Quintana-Murci L, et al. Systematic evaluation of DNA methylation age estimation with common preprocessing methods and the Infinium MethylationEPIC BeadChip array. *Clin Epigenetics*. 2018; 10: 123. doi: 10.1186/s13148-018-0556-2 [PubMed: 30326963]

541. Higgins-Chen AT, Thrush KL, Wang Y, Minteer CJ, Kuo PL, Wang M, Niimi P, Sturm G, Lin J, Moore AZ, Bandinelli S, et al. A computational solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking. *Nat Aging*. 2022; 2: 644–661. DOI: 10.1038/s43587-022-00248-2 [PubMed: 36277076]

542. Nie C, Li Y, Li R, Yan Y, Zhang D, Li T, Li Z, Sun Y, Zhen H, Ding J, Wan Z, et al. Distinct biological ages of organs and systems identified from a multi-omics study. *Cell Rep*. 2022; 38: 110459 [PubMed: 35263580]

543. Marttila S, Rajic S, Ciantar J, Mak JKL, Junntila IS, Kummola L, Hagg S, Raitoharju E, Kananen L. Biological aging of different blood cell types. *GeroScience*. 2024; doi: 10.1007/s11357-024-01287-w [PubMed: 39060678]

544. Nikopoulou C, Kleinenkuhnen N, Parekh S, Sandoval T, Ziegenhain C, Schneider F, Giavalisco P, Donahue KF, Vesting AJ, Kirchner M, Bozukova M, et al. Spatial and single-cell profiling of the metabolome, transcriptome and epigenome of the aging mouse liver. *Nat Aging*. 2023; 3: 1430–1445. DOI: 10.1038/s43587-023-00513-y [PubMed: 37946043]

545. Sillanpaa E, Heikkinen A, Kankaanpaa A, Paavilainen A, Kujala UM, Tammelin TH, Kovanen V, Sipila S, Pietilainen KH, Kaprio J, Ollikainen M, et al. Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. *Clin Epigenetics*. 2021; 13: 110. doi: 10.1186/s13148-021-01094-6 [PubMed: 34001218]

546. Koncevicius K, Nair A, Sveikauskaite A, Sestokaite A, Kazlauskaitė A, Dulskas A, Petronis A. Epigenetic age oscillates during the day. *Aging Cell*. 2024; 23 e14170 doi: 10.1111/acel.14170 [PubMed: 38638005]

547. Kerepesi C, Meer MV, Ablaeva J, Amoroso VG, Lee SG, Zhang B, Gerashchenko MV, Trapp A, Yim SH, Lu AT, Levine ME, et al. Epigenetic aging of the demographically non-aging naked mole-rat. *Nat Commun*. 2022; 13: 355. doi: 10.1038/s41467-022-27959-9 [PubMed: 35039495]

548. Poganik JR, Zhang B, Baht GS, Tyshkovskiy A, Deik A, Kerepesi C, Yim SH, Lu AT, Haghani A, Gong T, Hedman AM, et al. Biological age is increased by stress and restored upon recovery. *Cell Metab*. 2023; 35: 807–820. e805 doi: 10.1016/j.cmet.2023.03.015 [PubMed: 37086720]

549. Moqri M, Poganik JR, Horvath S, Gladyshev VN. What makes biological age epigenetic clocks tick. *Nature Aging*. 2025. [PubMed: 39994479]

550. May M. Biomarkers of aging remain elusive as researchers try to slow the biological clock. *Nat Med*. 2023; 29: 2673–2676. [PubMed: 37821685]

551. Ledford H. How quickly are you ageing? What molecular 'clocks' can tell you about your health. *Nature*. 2025; 638: 874–876. [PubMed: 40000869]

552. Moqri M, Herzog C, Poganik JR, Ying K, Justice JN, Belsky DW, Higgins-Chen AT, Chen BH, Cohen AA, Fuellen G, Hagg S, et al. Validation of biomarkers of aging. *Nat Med*. 2024; 30: 360–372. DOI: 10.1038/s41591-023-02784-9 [PubMed: 38355974]

553. Pratichizzo F, Frige C, Pellegrini V, Scisciola L, Santoro A, Monti D, Rippo MR, Ivanchenko M, Olivieri F, Franceschi C. Organ-specific biological clocks: Ageotyping for personalized anti-aging medicine. *Ageing Res Rev*. 2024; 96 102253 [PubMed: 38447609]

554. Jacques M, Landen S, Sharples AP, Garnham A, Schittenhelm R, Stele J, Heikkinen A, Sillanpää E, Ollikainen M, Broatch J, Zarekookandeh N, et al. Molecular Landscape of Modality-Specific Exercise Adaptation in Human Skeletal Muscle through Large-Scale Multi-OMICs Integration. *bioRxiv*. 2024. [PubMed: 40445834]

555. Deng YT, You J, He Y, Zhang Y, Li HY, Wu XR, Cheng JY, Guo Y, Long ZW, Chen YL, Li ZY, et al. Atlas of the plasma proteome in health and disease in 53,026 adults. *Cell*. 2025; 188: 253–271. e257 [PubMed: 39579765]

556. Nightingale Health Biobank Collaborative G. Metabolomic and genomic prediction of common diseases in 700,217 participants in three national biobanks. *Nat Commun.* 2024; 15: 10092 doi: 10.1038/s41467-024-54357-0 [PubMed: 39572536]

557. Ren J, Song M, Zhang W, Cai JP, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, et al. The Aging Biomarker Consortium represents a new era for aging research in China. *Nat Med.* 2023; 29: 2162–2165. [PubMed: 37468667]

558. Lyu YX, Fu Q, Wilczok D, Ying K, King A, Antebi A, Vojta A, Stolzing A, Moskalev A, Georgievskaya A, Maier AB, et al. Longevity biotechnology: bridging AI, biomarkers, geroscience and clinical applications for healthy longevity. *Aging (Albany NY).* 2024; 16: 12955–12976. DOI: 10.18632/aging.206135 [PubMed: 39418098]

559. Marino N, Putignano G, Cappilli S, Chersoni E, Santuccione A, Calabrese G, Bischof E, Vanhaelen Q, Zhavoronkov A, Scarano B, Mazzotta AD, et al. Towards AI-driven longevity research: An overview. *Front Aging.* 2023; 4: 1057204 doi: 10.3389/fragi.2023.1057204 [PubMed: 36936271]

560. McGreevy KM, Radak Z, Torma F, Jokai M, Lu AT, Belsky DW, Binder A, Marioni RE, Ferrucci L, Pospiech E, Branicki W, et al. DNAmFitAge: biological age indicator incorporating physical fitness. *Aging (Albany NY).* 2023; 15: 3904–3938. DOI: 10.18632/aging.204538 [PubMed: 36812475]

561. Martinez-Magana JJ, Hurtado-Soriano J, Rivero-Segura NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. *Arch Med Res.* 2024; 55: 103033 [PubMed: 38955096]

562. Harris KM, Levitt B, Gaydosh L, Martin C, Meyer JM, Mishra AA, Kelly AL, Aiello AE. Sociodemographic and Lifestyle Factors and Epigenetic Aging in US Young Adults: NIMHD Social Epigenomics Program. *JAMA Netw Open.* 2024; 7: e2427889 doi: 10.1001/jamanetworkopen.2024.27889 [PubMed: 39073811]

563. Fong S, Pabis K, Latumalea D, Dugersuren N, Unfried M, Tolwinski N, Kennedy B, Gruber J. Principal component-based clinical aging clocks identify signatures of healthy aging and targets for clinical intervention. *Nat Aging.* 2024; 4: 1137–1152. DOI: 10.1038/s43587-024-00646-8 [PubMed: 38898237]

564. Reicher L, Bar N, Godneva A, Reisner Y, Zahavi L, Shahaf N, Dhir R, Weinberger A, Segal E. Phenome-wide associations of human aging uncover sex-specific dynamics. *Nat Aging.* 2024; 4: 1643–1655. [PubMed: 39501126]

565. Horvath S, Topol EJ. Digitising the ageing process with epigenetic clocks. *Lancet.* 2024; 404: 423. [PubMed: 39097382]

566. Grolaux R, Jones-Freeman B, Jacques M, Eynon N. The benefits of exercise on aging: focus on muscle biomarkers. *Aging (Albany NY).* 2024; 16: 11482–11483. DOI: 10.18632/aging.206064 [PubMed: 39120582]

567. Polidori MC. Aging hallmarks, biomarkers, and clocks for personalized medicine: (re)positioning the limelight. *Free Radic Biol Med.* 2024; 215: 48–55. [PubMed: 38395089]

568. Fohr T, Tormakangas T, Lankila H, Viljanen A, Rantanen T, Ollikainen M, Kaprio J, Sillanpaa E. The Association Between Epigenetic Clocks and Physical Functioning in Older Women: A 3-Year Follow-up. *J Gerontol A Biol Sci Med Sci.* 2022; 77: 1569–1576. DOI: 10.1093/gerona/glab270 [PubMed: 34543398]

569. Frangos E, Graf C, Samaras N. Functional Aging: Integrating Functionality to a Multidimensional Assessment of Healthy Aging. *Curr Gerontol Geriatr Res.* 2023; 2023: 9409918 doi: 10.1155/2023/9409918 [PubMed: 36748046]

570. Petnehazy N, Barnes HN, Newman AB, Kritchevsky SB, Cummings SR, Heppen RT, Cawthon PM. Muscle Mass, Strength, Power and Physical Performance and Their Association with Quality of Life in Older Adults, the Study of Muscle, Mobility and Aging (SOMMA). *J Frailty Aging.* 2024; 13: 384–390. [PubMed: 39574257]

571. Guarente L, Sinclair DA, Kroemer G. Human trials exploring anti-aging medicines. *Cell Metab.* 2024; 36: 354–376. [PubMed: 38181790]

572. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause

mortality and cardiovascular events in healthy men and women: a meta-analysis. *JAMA*. 2009; 301: 2024–2035. [PubMed: 19454641]

573. Kokkinos P, Faselis C, Samuel IBH, Pittaras A, Doumas M, Murphy R, Heimall MS, Sui X, Zhang J, Myers J. Cardiorespiratory Fitness and Mortality Risk Across the Spectra of Age, Race, and Sex. *J Am Coll Cardiol*. 2022; 80: 598–609. [PubMed: 35926933]

574. Strasser B, Burtscher M. Survival of the fittest: VO₂max, a key predictor of longevity?. *Front Biosci (Landmark Ed)*. 2018; 23: 1505–1516. [PubMed: 29293447]

575. Blair SN, Kohl HW, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. *JAMA*. 1989; 262: 2395–2401. [PubMed: 2795824]

576. Lang JJ, Prince SA, Merucci K, Cadenas-Sanchez C, Chaput JP, Fraser BJ, Manyanga T, McGrath R, Ortega FB, Singh B, Tomkinson GR. Cardiorespiratory fitness is a strong and consistent predictor of morbidity and mortality among adults: an overview of meta-analyses representing over 20.9 million observations from 199 unique cohort studies. *Br J Sports Med*. 2024; 58: 556–566. DOI: 10.1136/bjsports-2023-107849 [PubMed: 38599681]

577. Lavie CJ, Sanchis-Gomar F, Ozemek C. Fit Is It for Longevity Across Populations. *J Am Coll Cardiol*. 2022; 80: 610–612. [PubMed: 35926934]

578. Sanchis-Gomar F, Lavie CJ, Marin J, Perez-Quilis C, Eijsvogels TMH, O'Keefe JH, Perez MV, Blair SN. Exercise effects on cardiovascular disease: from basic aspects to clinical evidence. *Cardiovasc Res*. 2022; 118: 2253–2266. [PubMed: 34478520]

579. Schmid D, Leitzmann MF. Cardiorespiratory fitness as predictor of cancer mortality: a systematic review and meta-analysis. *Ann Oncol*. 2015; 26: 272–278. [PubMed: 25009011]

580. Sui X, Sarzynski MA, Lee DC, Kokkinos PF. Impact of Changes in Cardiorespiratory Fitness on Hypertension, Dyslipidemia and Survival: An Overview of the Epidemiological Evidence. *Prog Cardiovasc Dis*. 2017; 60: 56–66. [PubMed: 28274819]

581. Franklin BA, Jae SY. Physical Activity, Cardiorespiratory Fitness and Atherosclerotic Cardiovascular Disease: Part 1. *Pulse (Basel)*. 2024; 12: 113–125. DOI: 10.1159/000541165 [PubMed: 39479581]

582. Franklin BA, Jae SY. Physical Activity, Cardiorespiratory Fitness, and Atherosclerotic Cardiovascular Disease: Part 2. *Pulse (Basel)*. 2024; 12: 126–138. DOI: 10.1159/000541166 [PubMed: 39479584]

583. Al-Mallah MH, Sakr S, Al-Qunaibet A. Cardiorespiratory Fitness and Cardiovascular Disease Prevention: an Update. *Curr Atheroscler Rep*. 2018; 20: 1. [PubMed: 29340805]

584. Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. *Quarterly Journal of Medicine*. 1923; 16: 135–171.

585. Millet GP, Burtscher J, Bourdillon N, Manferdelli G, Burtscher M, Sandbakk O. The V O₂max Legacy of Hill and Lupton (1923)-100 Years On. *Int J Sports Physiol Perform*. 2023; 18: 1362–1365. [PubMed: 37770066]

586. Bonikowske AR, Taylor JL, Larson KF, Hardwick J, Ozemek C, Harber MP, Kaminsky LA, Arena R, Lavie CJ. Evaluating current assessment techniques of cardiorespiratory fitness. *Expert Rev Cardiovasc Ther*. 2024; 22: 231–241. [PubMed: 38855917]

587. Smiraul BP, Bertucci DR, Teixeira IP. Is the VO₂max that we measure really maximal?. *Front Physiol*. 2013; 4: 203. doi: 10.3389/fphys.2013.00203 [PubMed: 23935584]

588. Poole DC, Jones AM. Measurement of the maximum oxygen uptake $\dot{V}O_{2\text{max}}$: $\dot{V}O_{2\text{peak}}$ is no longer acceptable. *J Appl Physiol* (1985). 2017; 122: 997–1002. [PubMed: 28153947]

589. Glaab T, Taube C. Practical guide to cardiopulmonary exercise testing in adults. *Respir Res*. 2022; 23: 9. doi: 10.1186/s12931-021-01895-6 [PubMed: 35022059]

590. Nichols S, Taylor C, Ingle L. A clinician's guide to cardiopulmonary exercise testing 2: test interpretation. *Br J Hosp Med (Lond)*. 2015; 76: 281–289. [PubMed: 25959940]

591. Taylor C, Nichols S, Ingle L. A clinician's guide to cardiopulmonary exercise testing 1: an introduction. *Br J Hosp Med (Lond)*. 2015; 76: 192–195. [PubMed: 25853347]

592. Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, et al. Clinician's Guide to cardiopulmonary exercise testing in adults:

a scientific statement from the American Heart Association. *Circulation*. 2010; 122: 191–225. [PubMed: 20585013]

593. Kaminsky LA, Arena R, Ellingsen O, Harber MP, Myers J, Ozemek C, Ross R. Cardiorespiratory fitness and cardiovascular disease - The past, present, and future. *Prog Cardiovasc Dis*. 2019; 62: 86–93. [PubMed: 30639135]

594. Williams N. The Borg Rating of Perceived Exertion (RPE) scale. *Occupational Medicine-Oxford*. 2017; 67: 404–405.

595. Ozemek C, Hardwick J, Bonikowske A, Christle J, German C, Reddy S, Arena R, Faghy M. How to interpret a cardiorespiratory fitness assessment - Key measures that provide the best picture of health, disease status and prognosis. *Prog Cardiovasc Dis*. 2024; 83: 23–28. [PubMed: 38417770]

596. McConnell TR. Practical considerations in the testing of VO₂max in runners. *Sports Med*. 1988; 5: 57–68. [PubMed: 3278356]

597. Price S, Wiecha S, Cieslinski I, Sliz D, Kasiak PS, Lach J, Gruba G, Kowalski T, Mamcarz A. Differences between Treadmill and Cycle Ergometer Cardiopulmonary Exercise Testing Results in Triathletes and Their Association with Body Composition and Body Mass Index. *Int J Environ Res Public Health*. 2022; 19 doi: 10.3390/ijerph19063557 [PubMed: 35329246]

598. Lundby C, Montero D, Joyner M. Biology of VO₂ max: looking under the physiology lamp. *Acta Physiol (Oxf)*. 2017; 220: 218–228. [PubMed: 27888580]

599. Mello ESF, Oliveira A, Santanna TDC, Soares P, Rodrigues GD. Updates in inspiratory muscle training for older adults: A systematic review. *Arch Gerontol Geriatr*. 2024; 127 105579 [PubMed: 39032314]

600. Mandsager K, Harb S, Cremer P, Phelan D, Nissen SE, Jaber W. Association of Cardiorespiratory Fitness With Long-term Mortality Among Adults Undergoing Exercise Treadmill Testing. *JAMA Netw Open*. 2018; 1 e183605 doi: 10.1001/jamanetworkopen.2018.3605 [PubMed: 30646252]

601. Hawkins S, Wiswell R. Rate and mechanism of maximal oxygen consumption decline with aging: implications for exercise training. *Sports Med*. 2003; 33: 877–888. [PubMed: 12974656]

602. Letnes JM, Nes BM, Wisloff U. Age-related decline in peak oxygen uptake: Cross-sectional vs. longitudinal findings. A review. *Int J Cardiol Cardiovasc Risk Prev*. 2023; 16 200171 doi: 10.1016/j.ijcrp.2023.200171 [PubMed: 36874046]

603. Lundby C, Robach P. Performance Enhancement: What Are the Physiological Limits?. *Physiology (Bethesda)*. 2015; 30: 282–292. [PubMed: 26136542]

604. Morey MC, Pieper CF, Cornoni-Huntley J. Is there a threshold between peak oxygen uptake and self-reported physical functioning in older adults?. *Med Sci Sports Exerc*. 1998; 30: 1223–1229. [PubMed: 9710861]

605. Moore KD, Qiao YS, Rosso AL, Toledo FGS, Cawthon PM, Cummings SR, Goodpaster BH, Kritchevsky SB, Glynn NW. Dual Roles of Cardiorespiratory Fitness and Fatigability in the Life-Space Mobility of Older Adults: The Study of Muscle, Mobility and Aging (SOMMA). *J Gerontol A Biol Sci Med Sci*. 2023; 78: 1392–1401. DOI: 10.1093/gerona/glad037 [PubMed: 36715332]

606. Ross R, Myers J. Cardiorespiratory Fitness and Its Place in Medicine. *Rev Cardiovasc Med*. 2023; 24: 14. doi: 10.31083/j.rcm2401014 [PubMed: 39076861]

607. Laukkonen JA, Isiozor NM, Kunutson SK. Objectively Assessed Cardiorespiratory Fitness and All-Cause Mortality Risk: An Updated Meta-analysis of 37 Cohort Studies Involving 2,258,029 Participants. *Mayo Clin Proc*. 2022; 97: 1054–1073. [PubMed: 35562197]

608. Kohl HW, Gordon NF, Villegas JA, Blair SN. Cardiorespiratory fitness, glycemic status, and mortality risk in men. *Diabetes Care*. 1992; 15: 184–192. [PubMed: 1547675]

609. Gaesser GA, Angadi SS. Obesity treatment: Weight loss versus increasing fitness and physical activity for reducing health risks. *iScience*. 2021; 24 102995 doi: 10.1016/j.isci.2021.102995 [PubMed: 34755078]

610. Ortega FB, Lavie CJ, Blair SN. Obesity and Cardiovascular Disease. *Circ Res*. 2016; 118: 1752–1770. [PubMed: 27230640]

611. Barry VW, Baruth M, Beets MW, Durstine JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. *Prog Cardiovasc Dis*. 2014; 56: 382–390. [PubMed: 24438729]

612. Lee CD, Blair SN, Jackson AS. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. *Am J Clin Nutr.* 1999; 69: 373–380. [PubMed: 10075319]

613. Weeldreyer NR, De Guzman JC, Paterson C, Allen JD, Gaesser GA, Angadi SS. Cardiorespiratory fitness, body mass index and mortality: a systematic review and meta-analysis. *Br J Sports Med.* 2024; doi: 10.1136/bjsports-2024-108748 [PubMed: 39537313]

614. Wang S, Xu L, Yang W, Wang J, Dove A, Qi X, Xu W. Association of cardiorespiratory fitness with dementia risk across different levels of genetic predisposition: a large community-based longitudinal study. *Br J Sports Med.* 2024. [PubMed: 39562145]

615. Kokkinos P, Faselis C, Franklin B, Lavie CJ, Sidossis L, Moore H, Karasik P, Myers J. Cardiorespiratory fitness, body mass index and heart failure incidence. *Eur J Heart Fail.* 2019; 21: 436–444. [PubMed: 30779281]

616. Hoppeler H. Deciphering $\dot{V}O_2$ (max): limits of the genetic approach. *J Exp Biol.* 2018; 221 [PubMed: 30381476]

617. Meyler S, Bottoms L, Muniz-Pumares D. Biological and methodological factors affecting $\dot{V}O_2$ max response variability to endurance training and the influence of exercise intensity prescription. *Exp Physiol.* 2021; 106: 1410–1424. [PubMed: 34036650]

618. Ronnestad BR, Hansen J, Stenslokkken L, Joyner MJ, Lundby C. Case Studies in Physiology: Temporal changes in determinants of aerobic performance in individual going from alpine skier to world junior champion time trial cyclist. *J Appl Physiol (1985).* 2019; 127: 306–311. [PubMed: 31194601]

619. Imboden MT, Harber MP, Whaley MH, Finch WH, Bishop DL, Fleenor BS, Kaminsky LA. The Association between the Change in Directly Measured Cardiorespiratory Fitness across Time and Mortality Risk. *Prog Cardiovasc Dis.* 2019; 62: 157–162. [PubMed: 30543812]

620. Robinson AT, Watso JC, Babcock MC, Joyner MJ, Farquhar WB. Record-Breaking Performance in a 70-Year-Old Marathoner. *N Engl J Med.* 2019; 380: 1485–1486. DOI: 10.1056/NEJMc1900771 [PubMed: 30970198]

621. Gries KJ, Raue U, Perkins RK, Lavin KM, Overstreet BS, D'Acquisto LJ, Graham B, Finch WH, Kaminsky LA, Trappe TA, Trappe S. Cardiovascular and skeletal muscle health with lifelong exercise. *J Appl Physiol (1985).* 2018; 125: 1636–1645. DOI: 10.1152/japplphysiol.00174.2018 [PubMed: 30161005]

622. Burtscher J, Strasser B, Burtscher M, Millet GP. The Impact of Training on the Loss of Cardiorespiratory Fitness in Aging Masters Endurance Athletes. *Int J Environ Res Public Health.* 2022; 19 doi: 10.3390/ijerph191711050 [PubMed: 36078762]

623. Kokkinos P, Myers J. Cardiorespiratory Fitness and Health Outcomes Across the Spectra of Age, Gender, and Race. *Rev Cardiovasc Med.* 2024; 25: 15. doi: 10.31083/j.rcm2501015 [PubMed: 39077644]

624. Allen WK, Seals DR, Hurley BF, Ehsani AA, Hagberg JM. Lactate threshold and distance-running performance in young and older endurance athletes. *J Appl Physiol (1985).* 1985; 58: 1281–1284. [PubMed: 3988681]

625. Valenzuela PL, Maffiuletti NA, Joyner MJ, Lucia A, Lepers R. Lifelong Endurance Exercise as a Countermeasure Against Age-Related [Formula: see text] Decline: Physiological Overview and Insights from Masters Athletes. *Sports Med.* 2020; 50: 703–716. [PubMed: 31873927]

626. Van Hooren B, Plasqui G, Lepers R. Physiological, Spatiotemporal, Anthropometric, Training, and Performance Characteristics of a 75-Year-Old Multiple World Record Holder Middle-Distance Runner. *Int J Sports Physiol Perform.* 2023; 18: 204–208. [PubMed: 36450295]

627. Billat V, Dhonneur G, Mille-Hamard L, Le Moyec L, Momken I, Launay T, Koralsztein JP, Besse S. Case Studies in Physiology: Maximal oxygen consumption and performance in a centenarian cyclist. *J Appl Physiol (1985).* 2017; 122: 430–434. [PubMed: 28035015]

628. Chambers DJ, Wisely NA. Cardiopulmonary exercise testing-a beginner's guide to the nine-panel plot. *BJA Educ.* 2019; 19: 158–164. DOI: 10.1016/j.bjae.2019.01.009 [PubMed: 33456885]

629. Del Punta L, De Biase N, Armenia S, Di Fiore V, Maremmani D, Gargani L, Mazzola M, De Carlo M, Mengozzi A, Lomonaco T, Galeotti GG, et al. Combining cardiopulmonary exercise testing with echocardiography: a multiparametric approach to the cardiovascular and

cardiopulmonary systems. *Eur Heart J Imaging Methods Pract.* 2023; 1 qyad021 doi: 10.1093/ehjimp/qyad021 [PubMed: 39044798]

630. Liu CM, Kuo MJ, Kuo CY, Wu IC, Chen PF, Hsu WT, Liao LL, Chen SA, Tsao HM, Liu CL, Hu YF. Reclassification of the conventional risk assessment for aging-related diseases by electrocardiogram-enabled biological age. *NPJ Aging.* 2025; 11: 7. doi: 10.1038/s41514-025-00198-0 [PubMed: 39915530]

631. Ghidoni C, Kruzik M, Rossi VA, Caselli S, Schmied CM, Niederseer D. Definitions for Hypertensive Response to Exercise. *Cardiol Rev.* 2024; 32: 273–278. [PubMed: 36729898]

632. Schultz MG, Otahal P, Cleland VJ, Blizzard L, Marwick TH, Sharman JE. Exercise-induced hypertension, cardiovascular events, and mortality in patients undergoing exercise stress testing: a systematic review and meta-analysis. *Am J Hypertens.* 2013; 26: 357–366. [PubMed: 23382486]

633. Radtke T, Crook S, Kaltsakas G, Louvaris Z, Berton D, Urquhart DS, Kampouras A, Rabinovich RA, Verges S, Kontopidis D, Boyd J, et al. ERS statement on standardisation of cardiopulmonary exercise testing in chronic lung diseases. *Eur Respir Rev.* 2019; 28 doi: 10.1183/16000617.0101-2018 [PubMed: 31852745]

634. Trankle CR, Canada JM, Jordan JH, Truong U, Hundley WG. Exercise Cardiovascular Magnetic Resonance: A Review. *J Magn Reson Imaging.* 2022; 55: 720–754. [PubMed: 33655592]

635. Jou J, Zhou X, Lindow T, Brudin L, Hedman K, Ekstrom M, Malinovschi A. Heart rate response and recovery in cycle exercise testing: normal values and association with mortality. *Eur J Prev Cardiol.* 2025; 32: 32–42. [PubMed: 39325720]

636. Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart-rate recovery immediately after exercise as a predictor of mortality. *N Engl J Med.* 1999; 341: 1351–1357. [PubMed: 10536127]

637. Qiu S, Cai X, Sun Z, Li L, Zuegel M, Steinacker JM, Schumann U. Heart Rate Recovery and Risk of Cardiovascular Events and All-Cause Mortality: A Meta-Analysis of Prospective Cohort Studies. *J Am Heart Assoc.* 2017; 6 doi: 10.1161/JAHA.117.005505 [PubMed: 28487388]

638. Tanner V, Millet GP, Bourdillon N. Agreement Between Heart Rate Variability - Derived vs. Ventilatory and Lactate Thresholds: A Systematic Review with Meta-Analyses. *Sports Med Open.* 2024; 10: 109. doi: 10.1186/s40798-024-00768-8 [PubMed: 39379776]

639. Jarczok MN, Weimer K, Braun C, Williams DP, Thayer JF, Gundel HO, Balint EM. Heart rate variability in the prediction of mortality: A systematic review and meta-analysis of healthy and patient populations. *Neurosci Biobehav Rev.* 2022; 143 104907 [PubMed: 36243195]

640. Jain CC, Borlaug BA. Performance and Interpretation of Invasive Hemodynamic Exercise Testing. *Chest.* 2020; 158: 2119–2129. DOI: 10.1016/j.chest.2020.05.552 [PubMed: 32473950]

641. Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they?. *Sports Med.* 2009; 39: 469–490. [PubMed: 19453206]

642. Poole DC, Rossiter HB, Brooks GA, Gladden LB. The anaerobic threshold: 50+ years of controversy. *J Physiol.* 2021; 599: 737–767. [PubMed: 33112439]

643. Joyner MJ, Hunter SK, Lucia A, Jones AM. Physiology and fast marathons. *J Appl Physiol (1985).* 2020; 128: 1065–1068. [PubMed: 31944889]

644. Jones AM. The fourth dimension: physiological resilience as an independent determinant of endurance exercise performance. *J Physiol.* 2024; 602: 4113–4128. [PubMed: 37606604]

645. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. *J Physiol.* 2008; 586: 35–44. DOI: 10.1113/jphysiol.2007.143834 [PubMed: 17901124]

646. Millet GP, Chamari K. Look to the stars-Is there anything that public health and rehabilitation can learn from elite sports?. *Front Sports Act Living.* 2022; 4 1072154 doi: 10.3389/fspor.2022.1072154 [PubMed: 36755563]

647. McKay AKA, Stellingwerff T, Smith ES, Martin DT, Mujika I, Goosey-Tolfrey VL, Sheppard J, Burke LM. Defining Training and Performance Caliber: A Participant Classification Framework. *Int J Sports Physiol Perform.* 2022; 17: 317–331. [PubMed: 34965513]

648. Burke LM, Whitfield J, Hawley JA. The race within a race: Together on the marathon starting line but miles apart in the experience. *Free Radic Biol Med.* 2024; 227: 367–378. [PubMed: 39395564]

649. Harber MP, Kaminsky LA, Arena R, Blair SN, Franklin BA, Myers J, Ross R. Impact of Cardiorespiratory Fitness on All-Cause and Disease-Specific Mortality: Advances Since 2009. *Prog Cardiovasc Dis.* 2017; 60: 11–20. [PubMed: 28286137]

650. Kampert JB, Blair SN, Barlow CE, Kohl HW 3rd. Physical activity, physical fitness, and all-cause and cancer mortality: a prospective study of men and women. *Ann Epidemiol.* 1996; 6: 452–457. [PubMed: 8915477]

651. Sui X, LaMonte MJ, Laditka JN, Hardin JW, Chase N, Hooker SP, Blair SN. Cardiorespiratory fitness and adiposity as mortality predictors in older adults. *JAMA.* 2007; 298: 2507–2516. DOI: 10.1001/jama.298.21.2507 [PubMed: 18056904]

652. Sui X, Laditka JN, Hardin JW, Blair SN. Estimated functional capacity predicts mortality in older adults. *J Am Geriatr Soc.* 2007; 55: 1940–1947. DOI: 10.1111/j.1532-5415.2007.01455.x [PubMed: 17979958]

653. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. *N Engl J Med.* 2002; 346: 793–801. [PubMed: 11893790]

654. Blair SN, Kohl HW 3rd, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera CA. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. *JAMA.* 1995; 273: 1093–1098. [PubMed: 7707596]

655. Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, Al-Hani AJ, Black HR. Exercise capacity and the risk of death in women: the St James Women Take Heart Project. *Circulation.* 2003; 108: 1554–1559. [PubMed: 12975254]

656. Kokkinos P, Myers J, Faselis C, Panagiotakos DB, Doumas M, Pittaras A, Manolis A, Kokkinos JP, Karasik P, Greenberg M, Papademetriou V, et al. Exercise capacity and mortality in older men: a 20-year follow-up study. *Circulation.* 2010; 122: 790–797. [PubMed: 20697029]

657. Farrell SW, Leonard D, Barlow CE, Shuval K, Pavlovic A, Defina LF. Examining the Gradient of All-Cause Mortality Risk in Women across the Cardiorespiratory Fitness Continuum. *Med Sci Sports Exerc.* 2022; 54: 1904–1910. [PubMed: 35787586]

658. Eriksson G, Liestol K, Bjornholt J, Thaulow E, Sandvik L, Eriksson J. Changes in physical fitness and changes in mortality. *Lancet.* 1998; 352: 759–762. [PubMed: 9737279]

659. Jackson AS, Sui X, O'Connor DP, Church TS, Lee DC, Artero EG, Blair SN. Longitudinal cardiorespiratory fitness algorithms for clinical settings. *Am J Prev Med.* 2012; 43: 512–519. DOI: 10.1016/j.amepre.2012.06.032 [PubMed: 23079174]

660. Artero EG, Jackson AS, Sui X, Lee DC, O'Connor DP, Lavie CJ, Church TS, Blair SN. Longitudinal algorithms to estimate cardiorespiratory fitness: associations with nonfatal cardiovascular disease and disease-specific mortality. *J Am Coll Cardiol.* 2014; 63: 2289–2296. DOI: 10.1016/j.jacc.2014.03.008 [PubMed: 24703924]

661. Peterman JE, Whaley MH, Harber MP, Fleenor BS, Imboden MT, Myers J, Arena R, Kaminsky LA. Comparison of non-exercise cardiorespiratory fitness prediction equations in apparently healthy adults. *Eur J Prev Cardiol.* 2021; 28: 142–148. [PubMed: 33838037]

662. Cabanas-Sanchez V, Artero EG, Lavie CJ, Higuera-Fresnillo S, Garcia-Esquinas E, Sadarangani KP, Ortola R, Rodriguez-Artalejo F, Martinez-Gomez D. Prediction of cardiovascular health by non-exercise estimated cardiorespiratory fitness. *Heart.* 2020; 106: 1832–1838. [PubMed: 32616509]

663. Lee I, Kim S, Kang H. Non-exercise based estimation of cardiorespiratory fitness is inversely associated with metabolic syndrome in a representative sample of Korean adults. *BMC Geriatr.* 2020; 20: 146. doi: 10.1186/s12877-020-01558-z [PubMed: 32306910]

664. Zhu YJ, Fu WR, Lu WJ, Wang XL, Wang X, Shan YG, Zheng XL, Li R, Peng M, Pan L, Qiu J, et al. Non-exercise Estimated Cardiorespiratory Fitness and Mortality Among Adults With Hypertension. *Am J Hypertens.* 2024; 38: 63–71. [PubMed: 39396103]

665. Wicks JR, Oldridge NB, Nielsen LK, Vickers CE. HR index--a simple method for the prediction of oxygen uptake. *Med Sci Sports Exerc.* 2011; 43: 2005–2012. [PubMed: 21364476]

666. Standl E, Erbach M, Schnell O. Defending the con side: obesity paradox does not exist. *Diabetes Care.* 2013; 36 (Suppl 2) S282–286. DOI: 10.2337/dc13-2040 [PubMed: 23882060]

667. Hainer V, Aldhoon-Hainerova I. Obesity paradox does exist. *Diabetes Care*. 2013; 36 (Suppl 2) S276–281. DOI: 10.2337/dc13-2023 [PubMed: 23882059]

668. Sato R, von Haehling S. Revisiting the obesity paradox in heart failure: what is the best anthropometric index to gauge obesity?. *Eur Heart J*. 2023; 44: 1154–1156. [PubMed: 36944505]

669. Prado CM, Gonzalez MC, Heymsfield SB. Body composition phenotypes and obesity paradox. *Curr Opin Clin Nutr Metab Care*. 2015; 18: 535–551. [PubMed: 26335310]

670. Aune D, Sen A, Prasad M, Norat T, Janszky I, Tonstad S, Romundstad P, Vatten LJ. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. *BMJ*. 2016; 353 i2156 doi: 10.1136/bmj.i2156 [PubMed: 27146380]

671. Lucas E, Aronne LJ. Is it Time to Define Obesity by Body Composition and Not Solely Body Mass Index?. *J Clin Endocrinol Metab*. 2024. [PubMed: 38994573]

672. Lee DH, Keum N, Hu FB, Orav EJ, Rimm EB, Willett WC, Giovannucci EL. Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. *BMJ*. 2018; 362 k2575 doi: 10.1136/bmj.k2575 [PubMed: 29970408]

673. Rubino F, Cummings DE, Eckel RH, Cohen RV, Wilding JPH, Brown WA, Stanford FC, Batterham RL, Farooqi IS, Farpour-Lambert NJ, le Roux CW, et al. Definition and diagnostic criteria of clinical obesity. *The Lancet Diabetes & Endocrinology*. 2025; doi: 10.1016/S2213-8587(24)00316-4 [PubMed: 39824205]

674. Alcazar J, Navarrete-Villanueva D, Manas A, Gomez-Cabello A, Pedrero-Chamizo R, Alegre LM, Villa G, Gusi N, Gonzalez-Gross M, Casajus JA, Vicente-Rodriguez G, et al. ‘Fat but powerful’ paradox: association of muscle power and adiposity markers with all-cause mortality in older adults from the EXERNET multicentre study. *Br J Sports Med*. 2021; 55: 1204–1211. [PubMed: 33727213]

675. Masters RK. Sources and severity of bias in estimates of the BMI-mortality association. *Popul Stud (Camb)*. 2023; 77: 35–53. DOI: 10.1080/00324728.2023.2168035 [PubMed: 36756765]

676. Srikanthan P, Karlamangla AS. Muscle mass index as a predictor of longevity in older adults. *Am J Med*. 2014; 127: 547–553. DOI: 10.1016/j.amjmed.2014.02.007 [PubMed: 24561114]

677. Kim D, Lee J, Park R, Oh CM, Moon S. Association of low muscle mass and obesity with increased all-cause and cardiovascular disease mortality in US adults. *J Cachexia Sarcopenia Muscle*. 2024; 15: 240–254. DOI: 10.1002/jcsm.13397 [PubMed: 38111085]

678. Wang DXM, Yao J, Zirek Y, Reijnierse EM, Maier AB. Muscle mass, strength, and physical performance predicting activities of daily living: a meta-analysis. *J Cachexia Sarcopenia Muscle*. 2020; 11: 3–25. DOI: 10.1002/jcsm.12502 [PubMed: 31788969]

679. Ceolin C, Acunto V, Simonato C, Cazzavillan S, Vergadoro M, Papa MV, Trapella GS, Sermasi R, Noale M, De Rui M, Zanforlini BM, et al. New Perspectives in the Association between Anthropometry and Mortality: The Role of Calf Circumference. *J Frailty Aging*. 2024; 13: 108–115. [PubMed: 38616366]

680. Prado CM, Purcell SA, Alish C, Pereira SL, Deutz NE, Heyland DK, Goodpaster BH, Tappenden KA, Heymsfield SB. Implications of low muscle mass across the continuum of care: a narrative review. *Ann Med*. 2018; 50: 675–693. DOI: 10.1080/07853890.2018.1511918 [PubMed: 30169116]

681. Santanasto AJ, Goodpaster BH, Kritchevsky SB, Miljkovic I, Satterfield S, Schwartz AV, Cummings SR, Boudreau RM, Harris TB, Newman AB. Body Composition Remodeling and Mortality: The Health Aging and Body Composition Study. *J Gerontol A Biol Sci Med Sci*. 2017; 72: 513–519. DOI: 10.1093/gerona/glw163 [PubMed: 27567109]

682. Gonzalez-Torres LA, Acuna-Rocha VD, Herrera-Nunez M, Millan-Alanis JM, de la Cruz-de la Cruz C, Rh ZC-L, Alcala-Gonzalez JI, Moreno-Hoyos-Abril JF, Gonzalez-Aguirre JE. Low muscle mass in the internal medicine ward: Prevalence and survival implications. *Arch Med Res*. 2024; 56 103103 [PubMed: 39406015]

683. Linge J, Petersson M, Forsgren MF, Sanyal AJ, Dahlqvist Leinhard O. Adverse muscle composition predicts all-cause mortality in the UK Biobank imaging study. *J Cachexia Sarcopenia Muscle*. 2021; 12: 1513–1526. DOI: 10.1002/jcsm.12834 [PubMed: 34713982]

684. Liu M, Zhang Z, Zhou C, Ye Z, He P, Zhang Y, Li H, Liu C, Qin X. Predicted fat mass and lean mass in relation to all-cause and cause-specific mortality. *J Cachexia Sarcopenia Muscle*. 2022; 13: 1064–1075. DOI: 10.1002/jcsm.12921 [PubMed: 35068076]

685. Zhou HH, Liao Y, Peng Z, Liu F, Wang Q, Yang W. Association of muscle wasting with mortality risk among adults: A systematic review and meta-analysis of prospective studies. *J Cachexia Sarcopenia Muscle*. 2023; 14: 1596–1612. DOI: 10.1002/jcsm.13263 [PubMed: 37209044]

686. Mariean CR, Tiuca OM, Mariean A, Cotoi OS. Cancer Cachexia: New Insights and Future Directions. *Cancers (Basel)*. 2023; 15 doi: 10.3390/cancers15235590 [PubMed: 38067294]

687. Ferrer M, Anthony TG, Ayres JS, Biffi G, Brown JC, Caan BJ, Cespedes Feliciano EM, Coll AP, Dunne RF, Goncalves MD, Grethlein J, et al. Cachexia: A systemic consequence of progressive, unresolved disease. *Cell*. 2023; 186: 1824–1845. DOI: 10.1016/j.cell.2023.03.028 [PubMed: 37116469]

688. Xu J, Wan CS, Ktoris K, Reijnierse EM, Maier AB. Sarcopenia Is Associated with Mortality in Adults: A Systematic Review and Meta-Analysis. *Gerontology*. 2022; 68: 361–376. [PubMed: 34315158]

689. Lee, Koon-Yee; Au, Chun-Ming; Li, Hoi-Yee; Chan, M; Li, HL; Man-Yung Cheung, B; Chi-Kei Wong, I; Ho-Fun Lee, V; Mok, J; Hon-Kei Yip, B; King-Yip Cheng, K; , et al. Sarcopenia and mortality in different clinical conditions: A meta-analysis. *Osteoporos Sarcopenia*. 2021; 7: S19–S27. DOI: 10.1016/j.afos.2021.02.001 [PubMed: 33997305]

690. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, Murphy R, Ghosh S, Sawyer MB, Baracos VE. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. *J Clin Oncol*. 2013; 31: 1539–1547. [PubMed: 23530101]

691. Liu C, Zhang Q, Liu T, Zhang Q, Song M, Ruan G, Lin S, Wang Z, Zheng X, Chen Y, Zhang H, et al. Predicted lean body mass trajectories, and cancer risk and cancer-specific and all-cause mortality: A prospective cohort study. *J Cachexia Sarcopenia Muscle*. 2023; 14: 2916–2924. DOI: 10.1002/jcsm.13370 [PubMed: 37969022]

692. Westbury LD, Beaudart C, Bruyere O, Cauley JA, Cawthon P, Cruz-Jentoft AJ, Curtis EM, Ensrud K, Fielding RA, Johansson H, Kanis JA, et al. Recent sarcopenia definitions-prevalence, agreement and mortality associations among men: Findings from population-based cohorts. *J Cachexia Sarcopenia Muscle*. 2023; 14: 565–575. DOI: 10.1002/jcsm.13160 [PubMed: 36604970]

693. Liu B, Liu R, Jin Y, Ding Y, Luo C. Association between possible sarcopenia, all-cause mortality, and adverse health outcomes in community-dwelling older adults in China. *Sci Rep*. 2024; 14 25913 doi: 10.1038/s41598-024-77725-8 [PubMed: 39472711]

694. Zhang Y, Zhang J, Zhan Y, Pan Z, Liu Q, Yuan W. Sarcopenia Is a Prognostic Factor of Adverse Effects and Mortality in Patients With Tumour: A Systematic Review and Meta-Analysis. *J Cachexia Sarcopenia Muscle*. 2024; 15: 2295–2310. DOI: 10.1002/jcsm.13629 [PubMed: 39529263]

695. Lemos T, Gallagher D. Current body composition measurement techniques. *Curr Opin Endocrinol Diabetes Obes*. 2017; 24: 310–314. DOI: 10.1097/MED.0000000000000360 [PubMed: 28696961]

696. Hemke R, Buckless C, Torriani M. Quantitative Imaging of Body Composition. *Semin Musculoskelet Radiol*. 2020; 24: 375–385. [PubMed: 32992366]

697. Duren DL, Sherwood RJ, Czerwinski SA, Lee M, Choh AC, Siervogel RM, Cameron Chumlea W. Body composition methods: comparisons and interpretation. *J Diabetes Sci Technol*. 2008; 2: 1139–1146. DOI: 10.1177/193229680800200623 [PubMed: 19885303]

698. Sales WB, Macedo S, Goncalves R, Andrade LEL, Ramalho CST, de Souza GF, Maciel ACC. Use of electrical bioimpedance in the assessment of sarcopenia in the older adults: A scoping review. *J Bodyw Mov Ther*. 2024; 39: 373–381. [PubMed: 38876654]

699. Borgeson E, Tavajoh S, Lange S, Jessen N. The challenges of assessing adiposity in a clinical setting. *Nat Rev Endocrinol*. 2024; 20: 615–626. [PubMed: 39009863]

700. Mijnarends DM, Meijers JM, Halfens RJ, ter Borg S, Luiking YC, Verlaan S, Schoberer D, Cruz Jentoft AJ, van Loon LJ, Schols JM. Validity and reliability of tools to measure muscle mass,

strength, and physical performance in community-dwelling older people: a systematic review. *J Am Med Dir Assoc.* 2013; 14: 170–178. [PubMed: 23276432]

701. Sabatino A, Sola KH, Brismar TB, Lindholm B, Stenvinkel P, Avesani CM. Making the invisible visible: imaging techniques for assessing muscle mass and muscle quality in chronic kidney disease. *Clin Kidney J.* 2024; 17 sfae028 doi: 10.1093/ckj/sfae028 [PubMed: 38444750]

702. Lukaski H, Raymond-Pope CJ. New Frontiers of Body Composition in Sport. *Int J Sports Med.* 2021; 42: 588–601. DOI: 10.1055/a-1373-5881 [PubMed: 33621995]

703. Golja P, Robic Pikel T, Zdesar Kotnik K, Flezar M, Selak S, Kapus J, Kotnik P. Direct Comparison of (Anthropometric) Methods for the Assessment of Body Composition. *Ann Nutr Metab.* 2020; 76: 183–192. [PubMed: 32640459]

704. Heymsfield SB. Advances in body composition: a 100-year journey. *Int J Obes (Lond).* 2024; doi: 10.1038/s41366-024-01511-9 [PubMed: 38643327]

705. Nana A, Slater GJ, Stewart AD, Burke LM. Methodology review: using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. *Int J Sport Nutr Exerc Metab.* 2015; 25: 198–215. [PubMed: 25029265]

706. Oliver CJ, Climstein M, Rosic N, Bosy-Westphal A, Tinsley G, Myers S. Fat-Free Mass: Friend or Foe to Metabolic Health?. *J Cachexia Sarcopenia Muscle.* 2025; 16 e13714 doi: 10.1002/jcsm.13714 [PubMed: 39895188]

707. Rodriguez C, Mota JD, Palmer TB, Heymsfield SB, Tinsley GM. Skeletal muscle estimation: A review of techniques and their applications. *Clin Physiol Funct Imaging.* 2024; 44: 261–284. [PubMed: 38426639]

708. Seabolt LA, Welch EB, Silver HJ. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease. *Ann N Y Acad Sci.* 2015; 1353: 41–59. [PubMed: 26250623]

709. Fosbol MO, Zerahn B. Contemporary methods of body composition measurement. *Clin Physiol Funct Imaging.* 2015; 35: 81–97. [PubMed: 24735332]

710. Lavalle S, Valerio MR, Masiello E, Gebbia V, Scandurra G. Unveiling the Intricate Dance: How Cancer Orchestrates Muscle Wasting and Sarcopenia. *In Vivo.* 2024; 38: 1520–1529. DOI: 10.21873/invivo.13602 [PubMed: 38936901]

711. Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. *JPEN J Parenter Enteral Nutr.* 2014; 38: 940–953. DOI: 10.1177/0148607114550189 [PubMed: 25239112]

712. Evans WJ, Ferrucci L. A simplified definition of sarcopenia: muscle mass/body weight. *J Nutr Health Aging.* 2024; 28 100302 [PubMed: 38908131]

713. Pagano AP, Montenegro J, Oliveira CLP, Desai N, Gonzalez MC, Cawthon PM, Evans WJ, Prado CM. Estimating Muscle Mass Using D3-Creatine Dilution: A Narrative Review of Clinical Implications and Comparison With Other Methods. *J Gerontol A Biol Sci Med Sci.* 2024; 79 doi: 10.1093/gerona/glad280 [PubMed: 38135279]

714. McCarthy C, Schoeller D, Brown JC, Gonzalez MC, Varanoske AN, Cataldi D, Shepherd J, Heymsfield SB. D(3)-creatine dilution for skeletal muscle mass measurement: historical development and current status. *J Cachexia Sarcopenia Muscle.* 2022; 13: 2595–2607. DOI: 10.1002/jcsm.13083 [PubMed: 36059250]

715. Cawthon PM, Blackwell T, Cummings SR, Orwoll ES, Duchowny KA, Kado DM, Stone KL, Ensrud KE, Cauley JA, Evans WJ. Muscle Mass Assessed by the D3 -Creatine Dilution Method and Incident Self-reported Disability and Mortality in a Prospective Observational Study of Community-Dwelling Older Men. *J Gerontol A Biol Sci Med Sci.* 2021; 76: 123–130. DOI: 10.1093/gerona/glaa111 [PubMed: 32442245]

716. Evans WJ, Hellerstein M, Orwoll E, Cummings S, Cawthon PM. D(3)-Creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. *J Cachexia Sarcopenia Muscle.* 2019; 10: 14–21. DOI: 10.1002/jcsm.12390 [PubMed: 30900400]

717. Fujita H. AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. *Radiol Phys Technol.* 2020; 13: 6–19. [PubMed: 31898014]

718. Pooler BD, Garrett JW, Lee MH, Rush BE, Kuchnia AJ, Summers RM, Pickhardt PJ. CT-Based Body Composition Measures and Systemic Disease: A Population-Level Analysis Using

Artificial Intelligence Tools in Over 100,000 Patients. *AJR Am J Roentgenol*. 2025. [PubMed: 39772583]

719. de Borba EL, Ceolin J, Ziegelmann PK, Bodanese LC, Goncalves MR, Canon-Montanez W, Mattiello R. Phase angle of bioimpedance at 50 kHz is associated with cardiovascular diseases: systematic review and meta-analysis. *Eur J Clin Nutr*. 2022; 76: 1366–1373. [PubMed: 35414661]

720. Langer RD, Ward LC, Larsen SC, Heitmann BL. Can change in phase angle predict the risk of morbidity and mortality during an 18-year follow-up period? A cohort study among adults. *Front Nutr*. 2023; 10: 1157531 doi: 10.3389/fnut.2023.1157531 [PubMed: 37200946]

721. Ballarin G, Valerio G, Alicante P, Di Vincenzo O, Monfrecola F, Scalfi L. Could BIA-derived phase angle predict health-related musculoskeletal fitness? A cross-sectional study in young adults. *Nutrition*. 2024; 122: 112388 [PubMed: 38442652]

722. Ward LC, Brantlov S. Bioimpedance basics and phase angle fundamentals. *Rev Endocr Metab Disord*. 2023; 24: 381–391. DOI: 10.1007/s11154-022-09780-3 [PubMed: 36749540]

723. Silva AM, Campa F, Stagi S, Gobbo LA, Buffa R, Toselli S, Silva DAS, Goncalves EM, Langer RD, Guerra-Junior G, Machado DRL, et al. The bioelectrical impedance analysis (BIA) international database: aims, scope, and call for data. *Eur J Clin Nutr*. 2023; 77: 1143–1150. [PubMed: 37532867]

724. Pratt J, Narici M, Boreham C, De Vito G. Dual-energy x-ray absorptiometry derived body composition trajectories across adulthood: Reference values and associations with body roundness index and body mass index. *Clin Nutr*. 2025; 46: 137–146. [PubMed: 39922095]

725. Borda MG, Patricio Baldera J, Patino-Hernandez D, Westman E, Perez-Zepeda MU, Tarazona-Santabalbina FJ, Wakabayashi H, Arai H, Kivipelto M, Aarsland D. Temporal Muscle Thickness Predicts Mortality and Disability in Older Adults Diagnosed with Mild Dementia. *J Frailty Aging*. 2024; 13: 441–447. [PubMed: 39574265]

726. Grune E, Nattenmuller J, Kiefer LS, Machann J, Peters A, Bamberg F, Schlett CL, Rospeszc S. Subphenotypes of body composition and their association with cardiometabolic risk - Magnetic resonance imaging in a population-based sample. *Metabolism*. 2024; 164: 156130 [PubMed: 39743039]

727. Garcia-Diez AI, Porta-Vilaro M, Isern-Kebeschull J, Naude N, Guggenberger R, Brugnara L, Milinkovic A, Bartolome-Solanas A, Soler-Perromat JC, Del Amo M, Novials A, et al. Myosteatosis: diagnostic significance and assessment by imaging approaches. *Quant Imaging Med Surg*. 2024; 14: 7937–7957. DOI: 10.21037/qims-24-365 [PubMed: 39544479]

728. ACdAH, Souza; Troschel, AS; Marquardt, JP; Hadži , I; Foldyna, B; Moura, FA; Hainer, J; Divakaran, S; Blankstein, R; Dorbala, S; Di Carli, MF; , et al. Skeletal muscle adiposity, coronary microvascular dysfunction, and adverse cardiovascular outcomes. *European Heart Journal*. 2025. [PubMed: 39827905]

729. Chait A, den Hartigh LJ. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. *Front Cardiovasc Med*. 2020; 7: 22. doi: 10.3389/fcvm.2020.00022 [PubMed: 32158768]

730. Liang Y, Ye X, Pan M, Chen Y, Yuan Y, Luo L. Impact of steatotic liver disease subtypes, sarcopenia, and fibrosis on all-cause and cause-specific mortality: a 15.7-year cohort study. *BMC Gastroenterol*. 2025; 25: 75. doi: 10.1186/s12876-025-03661-0 [PubMed: 39934679]

731. Anderson DB, Beach AJ, Chen L, Feng HJ, McKay MJ, Smith ZA, Weber KA 2nd, Wesselink EO, Elliott JM. What is normal age-related thigh muscle composition among 45-to 84-year-old adults from the UK Biobank study. *Geroscience*. 2024; doi: 10.1007/s11357-024-01304-y [PubMed: 39133460]

732. Lu A, Than S, Beare R, Hood La, Collyer TA, Srikanth V, Moran C. Interactions between muscle volume and body mass index on brain structure in the UK Biobank. *Front Dement*. 2024; 3: 1456716 doi: 10.3389/frdem.2024.1456716 [PubMed: 39376216]

733. Pischeda T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K, van der Schouw YT, Spencer E, Moons KG, Tjonneland A, Halkjaer J, et al. General and abdominal adiposity and risk of death in Europe. *N Engl J Med*. 2008; 359: 2105–2120. [PubMed: 19005195]

734. Sanchez-Romero LM, Sagaceta-Mejia J, Mindell JS, Passi-Solar A, Bernabe-Ortiz A, Tolentino-Mayo L, Moody A, Scholes S. Sex differences in the secular change in waist circumference relative to BMI in five countries from 1997 to 2020. *Obesity (Silver Spring)*. 2024; 32: 1934–1947. DOI: 10.1002/oby.24110 [PubMed: 39315405]

735. Tao Z, Zuo P, Ma G. The association between weight-adjusted waist circumference index and cardiovascular disease and mortality in patients with diabetes. *Sci Rep*. 2024; 14: 18973 doi: 10.1038/s41598-024-69712-w [PubMed: 39152145]

736. Shen Q, Zhou T, Chen X, Umar HM, Yang X, Shen X. Evaluating the weight-adjusted waist index as a predictive tool for sarcopenia and mortality risk. *Eat Weight Disord*. 2025; 30: 1. doi: 10.1007/s40519-024-01712-1 [PubMed: 39753988]

737. Zhang X, Ma N, Lin Q, Chen K, Zheng F, Wu J, Dong X, Niu W. Body Roundness Index and All-Cause Mortality Among US Adults. *JAMA Netw Open*. 2024; 7: e2415051 doi: 10.1001/jamanetworkopen.2024.15051 [PubMed: 38837158]

738. Liu Y, He H, Qian K, Huang Y, Ao X, Shi X, Ruan B, Xue R, Fu X, Wang S. Evaluation of Health Associations With Height-Normalised Abdominal Body Composition Indices: A Single-Centre Cross-Sectional Study. *J Cachexia Sarcopenia Muscle*. 2024; 15: 2651–2659. DOI: 10.1002/jcsm.13609 [PubMed: 39375152]

739. Benz E, Pinel A, Guillet C, Capel F, Pereira B, De Antonio M, Pouget M, Cruz-Jentoft AJ, Eglseer D, Topinkova E, Barazzoni R, et al. Sarcopenia and Sarcopenic Obesity and Mortality Among Older People. *JAMA Netw Open*. 2024; 7: e243604 doi: 10.1001/jamanetworkopen.2024.3604 [PubMed: 38526491]

740. Gengxin Y, Xuehan M, Xinyu W, Yali Y, Yiran X, Lishuang Z, Yiming Q, Guichen L, Li C. Association between sarcopenic obesity and risk of frailty in older adults: a systematic review and meta-analysis. *Age Ageing*. 2025; 54 [PubMed: 39775783]

741. Booranasuksakul U, Guan Z, Macdonald IA, Tsintzas K, Stephan BCM, Siervo M. Sarcopenic obesity and brain health: A critical appraisal of the current evidence. *Nutr Bull*. 2025. [PubMed: 39799465]

742. Briand M, Raffin J, Gonzalez-Bautista E, Ritz P, Abellan Van Kan G, Pillard F, Faruch-Bilfeld M, Guyonnet S, Dray C, Vellas B, de Souto Barreto P, et al. Body composition and aging: cross-sectional results from the INSPIRE study in people 20 to 93 years old. *Geroscience*. 2024; doi: 10.1007/s11357-024-01245-6 [PubMed: 39028455]

743. Sedlmeier AM, Baumeister SE, Weber A, Fischer B, Thorand B, Ittermann T, Dorr M, Felix SB, Volzke H, Peters A, Leitzmann MF. Relation of body fat mass and fat-free mass to total mortality: results from 7 prospective cohort studies. *Am J Clin Nutr*. 2021; 113: 639–646. [PubMed: 33437985]

744. Damanti S, Citterio L, Zagato L, Brioni E, Magnaghi C, Simonini M, De Lorenzo R, Ruggiero M, Santoro S, Senini E, Messina M, et al. Sarcopenic obesity and pre-sarcopenia contribute to frailty in community-dwelling Italian older people: data from the FRASNET study. *BMC Geriatr*. 2024; 24: 638. doi: 10.1186/s12877-024-05216-6 [PubMed: 39085777]

745. Linge J, Ekstedt M, Dahlqvist Leinhard O. Adverse muscle composition is linked to poor functional performance and metabolic comorbidities in NAFLD. *JHEP Rep*. 2021; 3: 100197 doi: 10.1016/j.jhepr.2020.100197 [PubMed: 33598647]

746. Linge J, Nasr P, Sanyal AJ, Dahlqvist Leinhard O, Ekstedt M. Adverse muscle composition is a significant risk factor for all-cause mortality in NAFLD. *JHEP Rep*. 2023; 5: 100663 doi: 10.1016/j.jhepr.2022.100663 [PubMed: 36818816]

747. Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. *J Bone Miner Res*. 1997; 12: 2076–2081. [PubMed: 9421240]

748. Collaborators GBDAB. Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021. *Lancet*. 2025; doi: 10.1016/S0140-6736(25)00355-1 [PubMed: 40049186]

749. Cruz-Jentoft AJ, Gonzalez MC, Prado CM. Sarcopenia not equal low muscle mass. *Eur Geriatr Med*. 2023; 14: 225–228. [PubMed: 36869279]

750. Manini TM, Clark BC. Dynapenia and aging: an update. *J Gerontol A Biol Sci Med Sci*. 2012; 67: 28–40. DOI: 10.1093/gerona/glr010 [PubMed: 21444359]

751. Freitas SR, Cruz-Montecinos C, Ratel S, Pinto RS. Powerpenia Should be Considered a Biomarker of Healthy Aging. *Sports Med Open*. 2024; 10: 27. doi: 10.1186/s40798-024-00689-6 [PubMed: 38523229]

752. Clark BC, Manini TM. Sarcopenia =/≠ dynapenia. *J Gerontol A Biol Sci Med Sci*. 2008; 63: 829–834. [PubMed: 18772470]

753. Araujo CGS, Tou NX. Muscle Matters: Bridging the Gap Between Terminology of Age-Related Muscle Loss and Exercise Interventions. *J Aging Phys Act*. 2024; 1–3. [PubMed: 39379016]

754. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. *Front Physiol*. 2012; 3: 260. doi: 10.3389/fphys.2012.00260 [PubMed: 22934016]

755. van den Hoek DJ, Beaumont PL, van den Hoek AK, Owen PJ, Garrett JM, Buhmann R, Latella C. Normative data for the squat, bench press and deadlift exercises in powerlifting: Data from 809,986 competition entries. *J Sci Med Sport*. 2024; 27: 734–742. [PubMed: 39060209]

756. Wiegmann S, Felsenberg D, Armbrecht G, Dietzel R. Longitudinal changes in muscle power compared to muscle strength and mass. *J Musculoskelet Neuronal Interact*. 2021; 21: 13–25. [PubMed: 33657752]

757. Brown JC, Harhay MO, Harhay MN. The muscle quality index and mortality among males and females. *Ann Epidemiol*. 2016; 26: 648–653. DOI: 10.1016/j.annepidem.2016.07.006 [PubMed: 27480478]

758. Fragala MS, Kenny AM, Kuchel GA. Muscle quality in aging: a multi-dimensional approach to muscle functioning with applications for treatment. *Sports Med*. 2015; 45: 641–658. [PubMed: 25655372]

759. McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. *Longev Healthspan*. 2014; 3: 9. doi: 10.1186/2046-2395-3-9 [PubMed: 25520782]

760. Furrer R, Handschin C. Muscle Wasting Diseases: Novel Targets and Treatments. *Annu Rev Pharmacol Toxicol*. 2019; 59: 315–339. DOI: 10.1146/annurev-pharmtox-010818-021041 [PubMed: 30148697]

761. Kanbay M, Siriopol D, Copur S, Hasbal NB, Guldan M, Kalantar-Zadeh K, Garfias-Veitl T, von Haehling S. Effect of Bimagrumab on body composition: a systematic review and meta-analysis. *Aging Clin Exp Res*. 2024; 36: 185. doi: 10.1007/s40520-024-02825-4 [PubMed: 39251484]

762. Zhang S, Peng LN, Lee WJ, Nishita Y, Otsuka R, Arai H, Chen LK. Muscle function outweighs appendicular lean mass in predicting adverse outcomes: Evidence from Asian longitudinal studies. *J Nutr Health Aging*. 2024; 28: 100403 [PubMed: 39476465]

763. Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, McKenzie S, Song Y. Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults. *Med Sci Sports Exerc*. 2018; 50: 458–467. DOI: 10.1249/MSS.0000000000001448 [PubMed: 28991040]

764. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. *J Gerontol A Biol Sci Med Sci*. 2006; 61: 72–77. [PubMed: 16456196]

765. Sayer AA, Kirkwood TB. Grip strength and mortality: a biomarker of ageing?. *Lancet*. 2015; 386: 226–227. [PubMed: 25982159]

766. Soysal P, Hurst C, Demurtas J, Firth J, Howden R, Yang L, Tully MA, Koyanagi A, Ilie PC, Lopez-Sanchez GF, Schwingshakel L, et al. Handgrip strength and health outcomes: Umbrella review of systematic reviews with meta-analyses of observational studies. *J Sport Health Sci*. 2021; 10: 290–295. DOI: 10.1016/j.jshs.2020.06.009 [PubMed: 32565244]

767. Saez de Asteasu ML, Cadore EL, Steffens T, Blanco-Rambo E, Schneider TC, Izquierdo M, Pietta-Dias C. Reduced Handgrip Strength Is Associated with 1 Year-Mortality in Brazilian Frail Nonagenarians and Centenarians. *J Frailty Aging*. 2024; 13: 31–34. [PubMed: 38305440]

768. Garcia-Hermoso A, Cavero-Redondo I, Ramirez-Velez R, Ruiz JR, Ortega FB, Lee DC, Martinez-Vizcaino V. Muscular Strength as a Predictor of All-Cause Mortality in an Apparently Healthy

Population: A Systematic Review and Meta-Analysis of Data From Approximately 2 Million Men and Women. *Arch Phys Med Rehabil.* 2018; 99: 2100–2113. e2105 [PubMed: 29425700]

769. Vaishya R, Misra A, Vaish A, Ursino N, D'Ambrosi R. Hand grip strength as a proposed new vital sign of health: a narrative review of evidences. *J Health Popul Nutr.* 2024; 43: 7. doi: 10.1186/s41043-024-00500-y [PubMed: 38195493]

770. Faigenbaum AD, Garcia-Hermoso A, MacDonald JP, Mortatti A, Rial Rebullido T. Bridging the gap between strengthspan and lifespan. *Br J Sports Med.* 2024; 58: 758–760. [PubMed: 38754987]

771. Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: A narrative review. *Eur J Intern Med.* 2015; 26: 303–310. [PubMed: 25921473]

772. Jinha A, Herzog W. Muscle power: A simple concept causing much confusion. *J Sport Health Sci.* 2024; 101005 doi: 10.1016/j.jshs.2024.101005 [PubMed: 39490655]

773. Coelho-Junior HJ, Alvarez-Bustos A, Landi F, da Silva Aguiar S, Rodriguez-Manas L, Marzetti E. Why are we not exploring the potential of lower limb muscle power to identify people with sarcopenia?. *Ageing Res Rev.* 2025; 104: 102662 [PubMed: 39818236]

774. Alcazar J, Rodriguez-Lopez C, Delecluse C, Thomis M, Van Roie E. Ten-year longitudinal changes in muscle power, force, and velocity in young, middle-aged, and older adults. *J Cachexia Sarcopenia Muscle.* 2023; 14: 1019–1032. DOI: 10.1002/jcsm.13184 [PubMed: 36788413]

775. Losa-Reyna J, Alcazar J, Carnicero J, Alfaro-Acha A, Castillo-Gallego C, Rosado-Artalejo C, Rodriguez-Manas L, Ara I, Garcia-Garcia FJ. Impact of Relative Muscle Power on Hospitalization and All-Cause Mortality in Older Adults. *J Gerontol A Biol Sci Med Sci.* 2022; 77: 781–789. [PubMed: 34407184]

776. Izquierdo M, Cadore EL. Power to prolong independence and healthy ageing in older adults. *Br J Sports Med.* 2024; 58: 524–526. [PubMed: 38176853]

777. McGrath R, McGrath BM, Jurivich D, Knutson P, Mastrud M, Singh B, Tomkinson GR. Collective Weakness Is Associated With Time to Mortality in Americans. *J Strength Cond Res.* 2024; 38: e398–e404. DOI: 10.1519/JSC.0000000000004780 [PubMed: 38595265]

778. Chan OY, van Houwelingen AH, Gussekloo J, Blom JW, den Elzen WP. Comparison of quadriceps strength and handgrip strength in their association with health outcomes in older adults in primary care. *Age (Dordr).* 2014; 36: 9714 doi: 10.1007/s11357-014-9714-4 [PubMed: 25280549]

779. Guadalupe-Grau A, Carnicero JA, Gomez-Cabello A, Gutierrez Avila G, Humanes S, Alegre LM, Castro M, Rodriguez-Manas L, Garcia-Garcia FJ. Association of regional muscle strength with mortality and hospitalisation in older people. *Age Ageing.* 2015; 44: 790–795. [PubMed: 26163682]

780. Andersen LL, Lopez-Bueno R, Nunez-Cortes R, Cadore EL, Polo-Lopez A, Calatayud J. Association of Muscle Strength With All-Cause Mortality in the Oldest Old: Prospective Cohort Study From 28 Countries. *J Cachexia Sarcopenia Muscle.* 2024; 15: 2756–2764. DOI: 10.1002/jcsm.13619 [PubMed: 39439054]

781. Fitzgerald SJ, Barlow CE, Kampert JB, Morrow JR, Jackson AW, Blair SN. Muscular Fitness and All-Cause Mortality: Prospective Observations. *Journal of Physical Activity and Health.* 2004; 1: 7–18.

782. Andersen LL, Calatayud J, Nunez-Cortes R, Polo-Lopez A, Lopez-Bueno R. Graded association of muscle strength with all-cause and cause-specific mortality in older adults with diabetes: Prospective cohort study across 28 countries. *Diabetes Obes Metab.* 2025; 27: 312–319. [PubMed: 39444141]

783. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, Sayer AA. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. *Age Ageing.* 2011; 40: 423–429. [PubMed: 21624928]

784. Gunther CM, Burger A, Rickert M, Crispin A, Schulz CU. Grip strength in healthy caucasian adults: reference values. *J Hand Surg Am.* 2008; 33: 558–565. [PubMed: 18406961]

785. Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, Gale CR, Inskip HM, Jagger C, Kirkwood TB, Lawlor DA, et al. Grip strength across the life course: normative data

from twelve British studies. *PLoS One*. 2014; 9 e113637 doi: 10.1371/journal.pone.0113637 [PubMed: 25474696]

786. Steiber N. Strong or Weak Handgrip? Normative Reference Values for the German Population across the Life Course Stratified by Sex, Age, and Body Height. *PLoS One*. 2016; 11 e0163917 doi: 10.1371/journal.pone.0163917 [PubMed: 27701433]

787. Wang YC, Bohannon RW, Li X, Sindhu B, Kapellusch J. Hand-Grip Strength: Normative Reference Values and Equations for Individuals 18 to 85 Years of Age Residing in the United States. *J Orthop Sports Phys Ther*. 2018; 48: 685–693. [PubMed: 29792107]

788. Silva-Santos T, Guerra RS, Valdivieso R, Amaral TF. Hand Grip Force-Time Curve Indicators Evaluated by Dynamometer: A Systematic Review. *Nutrients*. 2024; 16 doi: 10.3390/nu16121951 [PubMed: 38931305]

789. Esteban-Cornejo I, Ho FK, Petermann-Rocha F, Lyall DM, Martinez-Gomez D, Cabanas-Sanchez V, Ortega FB, Hillman CH, Gill JMR, Quinn TJ, Sattar N, et al. Handgrip strength and all-cause dementia incidence and mortality: findings from the UK Biobank prospective cohort study. *J Cachexia Sarcopenia Muscle*. 2022; 13: 1514–1525. DOI: 10.1002/jcsm.12857 [PubMed: 35445560]

790. Rijk JM, Roos PR, Deckx L, van den Akker M, Buntinx F. Prognostic value of handgrip strength in people aged 60 years and older: A systematic review and meta-analysis. *Geriatr Gerontol Int*. 2016; 16: 5–20. [PubMed: 26016893]

791. Peterson MD, Casten K, Collins S, Hassan H, Garcia-Hermoso A, Faul J. Muscle weakness is a prognostic indicator of disability and chronic disease multimorbidity. *Exp Gerontol*. 2021; 152 111462 doi: 10.1016/j.exger.2021.111462 [PubMed: 34224846]

792. Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A Jr, Orlandini A, Seron P, Ahmed SH, Rosengren A, Kelishadi R, Rahman O, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. *Lancet*. 2015; 386: 266–273. [PubMed: 25982160]

793. Lee A, Park S. Factors Affecting Handgrip Strength in Menopausal Women at High Risk of Sarcopenia: A National Population-Based Study. *Healthcare (Basel)*. 2024; 12 doi: 10.3390/healthcare12242590 [PubMed: 39766017]

794. Syddall H, Cooper C, Martin F, Briggs R, Aihie Sayer A. Is grip strength a useful single marker of frailty?. *Age Ageing*. 2003; 32: 650–656. [PubMed: 14600007]

795. Granic A, Cooper R, Hurst C, Hillman SJ, Dodds RM, Witham MD, Sayer AA. Cross-sectional and longitudinal associations between glycaemic measures and grip strength in people without diabetes in the UK Biobank cohort study. *Eur Geriatr Med*. 2024; doi: 10.1007/s41999-024-01119-2 [PubMed: 39612082]

796. Toba A. Combining body mass index and muscle function in investigating mortality among older hypertensive patients. *Hypertens Res*. 2024. [PubMed: 39627394]

797. Carson RG. Get a grip: individual variations in grip strength are a marker of brain health. *Neurobiol Aging*. 2018; 71: 189–222. [PubMed: 30172220]

798. Zhang F, Luo B, Bai Y, Zhang Y, Huang L, Lu W. Association of handgrip strength and risk of cardiovascular disease: a population-based cohort study. *Aging Clin Exp Res*. 2024; 36: 207. doi: 10.1007/s40520-024-02856-x [PubMed: 39406921]

799. Amarowicz J, Warzecha M, Krawczyk A. Handgrip and its relation to age, fragility fractures, and BMD between sexes in a population aged 50+ years. *Prz Menopausalny*. 2024; 23: 167–172. DOI: 10.5114/pm.2024.145947 [PubMed: 39811384]

800. Kaczorowska A, Koziel S, Ignasiak Z. Hand grip strength and quality of life among adults aged 50-90 years from South West Poland. *Sci Rep*. 2025; 15: 882. doi: 10.1038/s41598-024-84923-x [PubMed: 39762442]

801. Ribeiro LW, Berndt S, Mielke GI, Doust J, Mishra GD. Factors associated with handgrip strength across the life course: A systematic review. *J Cachexia Sarcopenia Muscle*. 2024; 15: 2270–2280. DOI: 10.1002/jcsm.13586 [PubMed: 39183633]

802. Dos Santos AP, Cordeiro JFC, Abdalla PP, Bohn L, Sebastiao E, da Silva LSL, Tasinafo-Junior MF, Venturini ACR, Andaki ACR, Mendes EL, Marcos-Pardo PJ, et al. Low handgrip strength is associated with falls after the age of 50: findings from the Brazilian longitudinal study of aging

(ELSI-Brazil). *Arch Public Health*. 2024; 82: 172. doi: 10.1186/s13690-024-01340-2 [PubMed: 39354567]

803. Tanaka T, Lyu W, Yoshizawa Y, Son BK, Iijima K. Letter to the Editor: "Kami-Chigiri" (Newspaper Tear-Off) Test: Simple Screening Method for Assessing Muscle Weakness among Community-Dwelling Older Adults. *J Frailty Aging*. 2024; 13: 586–587. [PubMed: 39574286]

804. Yeung SSY, Reijniersse EM, Trappenburg MC, Hogrel JY, McPhee JS, Piasecki M, Sipila S, Salpakoski A, Butler-Browne G, Paasuke M, Gapeyeva H, et al. Handgrip Strength Cannot Be Assumed a Proxy for Overall Muscle Strength. *J Am Med Dir Assoc*. 2018; 19: 703–709. [PubMed: 29935982]

805. Swales B, Ryde GC, Fletcher I, Whittaker AC. The reliability and suitability of strength assessments in frail and pre-frail older adults: recommendations for strength testing in older populations. *BMC Geriatr*. 2023; 23: 820. doi: 10.1186/s12877-023-04552-3 [PubMed: 38066459]

806. Arnold WD, Clark BC. Neuromuscular junction transmission failure in aging and sarcopenia: The nexus of the neurological and muscular systems. *Ageing Res Rev*. 2023; 89: 101966 doi: 10.1016/j.arr.2023.101966 [PubMed: 37270145]

807. Verschueren A, Palminha C, Delmont E, Attarian S. Changes in neuromuscular function in elders: Novel techniques for assessment of motor unit loss and motor unit remodeling with aging. *Rev Neurol (Paris)*. 2022; 178: 780–787. [PubMed: 35863917]

808. Virto N, Rio X, Mendez-Zorrilla A, Garcia-Zapirain B. Non invasive techniques for direct muscle quality assessment after exercise intervention in older adults: a systematic review. *BMC Geriatr*. 2024; 24: 642. doi: 10.1186/s12877-024-05243-3 [PubMed: 39085773]

809. Wang H, Zuo S, Cerezo-Sanchez M, Arekhloo NG, Nazarpour K, Heidari H. Wearable super-resolution muscle-machine interfacing. *Front Neurosci*. 2022; 16: 1020546 doi: 10.3389/fnins.2022.1020546 [PubMed: 36466163]

810. Olpe T, Wunderle C, Bargetzi L, Tribollet P, Laviano A, Stanga Z, Prado CM, Mueller B, Schuetz P. Muscle matters: Prognostic implications of malnutrition and muscle health parameters in patients with cancer. A secondary analysis of a randomised trial. *Clin Nutr*. 2024; 43: 2255–2262. [PubMed: 39181036]

811. Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. *Compr Physiol*. 2023; 13: 4879–4907. DOI: 10.1002/cphy.c220027 [PubMed: 37358508]

812. Ding D, Ekelund U. From London buses to activity trackers: A reflection of 70 years of physical activity research. *J Sport Health Sci*. 2024; 13: 736–738. DOI: 10.1016/j.jshs.2024.06.001 [PubMed: 38851584]

813. Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart-disease and physical activity of work. *Lancet*. 1953; 262: 1111–1120. [PubMed: 13110075]

814. Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart-disease and physical activity of work. *Lancet*. 1953; 262: 1053–1057. [PubMed: 13110049]

815. Gremaud AL, Carr LJ, Simmering JE, Evans NJ, Cremer JF, Segre AM, Polgreen LA, Polgreen PM. Gamifying Accelerometer Use Increases Physical Activity Levels of Sedentary Office Workers. *J Am Heart Assoc*. 2018; 7 doi: 10.1161/JAHA.117.007735 [PubMed: 29967221]

816. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The Physical Activity Guidelines for Americans. *JAMA*. 2018; 320: 2020–2028. DOI: 10.1001/jama.2018.14854 [PubMed: 30418471]

817. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, Dempsey PC, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. *Br J Sports Med*. 2020; 54: 1451–1462. DOI: 10.1136/bjsports-2020-102955 [PubMed: 33239350]

818. Du Y, Liu B, Sun Y, Snetselaar LG, Wallace RB, Bao W. Trends in Adherence to the Physical Activity Guidelines for Americans for Aerobic Activity and Time Spent on Sedentary Behavior Among US Adults, 2007 to 2016. *JAMA Netw Open*. 2019; 2 e197597 doi: 10.1001/jamanetworkopen.2019.7597 [PubMed: 31348504]

819. Strain T, Flaxman S, Guthold R, Semenova E, Cowan M, Riley LM, Bull FC, Stevens GA, Country Data Author G. National, regional, and global trends in insufficient physical

activity among adults from 2000 to 2022: a pooled analysis of 507 population-based surveys with 5.7 million participants. *Lancet Glob Health*. 2024; 12: e1232–e1243. DOI: 10.1016/S2214-109X(24)00150-5 [PubMed: 38942042]

820. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, Lancet Physical Activity Series Working G. Global physical activity levels: surveillance progress, pitfalls, and prospects. *Lancet*. 2012; 380: 247–257. [PubMed: 22818937]

821. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. *Lancet Glob Health*. 2018; 6: e1077–e1086. [PubMed: 30193830]

822. Ren Z, Zhang Y, Drenowatz C, Eather N, Hong J, Wang L, Yan J, Chen S. How many adults have sufficient muscle-strengthening exercise and the associated factors: A systematic review consisting of 2,629,508 participants. *J Exerc Sci Fit*. 2024; 22: 359–368. DOI: 10.1016/j.jesf.2024.06.002 [PubMed: 39040428]

823. Abildso CG, Daily SM, Umstattd Meyer MR, Perry CK, Eyler A. Prevalence of Meeting Aerobic, Muscle-Strengthening, and Combined Physical Activity Guidelines During Leisure Time Among Adults, by Rural-Urban Classification and Region - United States, 2020. *MMWR Morb Mortal Wkly Rep*. 2023; 72: 85–89. DOI: 10.15585/mmwr.mm7204a1 [PubMed: 36701252]

824. Martinez-Gomez D, Rodriguez-Artalejo F, Ding D, Ekelund U, Cabanas-Sanchez V. Trends in the association between meeting the physical activity guidelines and risk of mortality in US adults. *Prog Cardiovasc Dis*. 2024; 83: 116–123. [PubMed: 38417772]

825. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, American College of Sports M. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. *Med Sci Sports Exerc*. 2011; 43: 1334–1359. [PubMed: 21694556]

826. Leitzmann MF, Park Y, Blair A, Ballard-Barbash R, Mouw T, Hollenbeck AR, Schatzkin A. Physical activity recommendations and decreased risk of mortality. *Arch Intern Med*. 2007; 167: 2453–2460. [PubMed: 18071167]

827. Zhao M, Veeranki SP, Magnussen CG, Xi B. Recommended physical activity and all cause and cause specific mortality in US adults: prospective cohort study. *BMJ*. 2020; 370 m2031 doi: 10.1136/bmj.m2031 [PubMed: 32611588]

828. Thornton JS, Morley WN, Sinha SK. Move more, age well: prescribing physical activity for older adults. *CMAJ*. 2025; 197: E59–E67. DOI: 10.1503/cmaj.231336 [PubMed: 39870409]

829. Williams PT. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. *Med Sci Sports Exerc*. 2001; 33: 754–761. DOI: 10.1097/00005768-200105000-00012 [PubMed: 11323544]

830. Myers J, Kaykha A, George S, Abella J, Zaheer N, Lear S, Yamazaki T, Froelicher V. Fitness versus physical activity patterns in predicting mortality in men. *Am J Med*. 2004; 117: 912–918. [PubMed: 15629729]

831. Ji Y, Atakan MM, Yan X, Wu J, Kuang J, Peng L. Reallocating just 10 min to moderate-to-vigorous physical activity from other components of 24-hour movement behaviors improves cardiovascular health in adults. *BMC Public Health*. 2024; 24: 1768 doi: 10.1186/s12889-024-19255-6 [PubMed: 38961409]

832. Saez de Asteasu ML, Martinez-Velilla N, Zambom-Ferraresi F, Galbete A, Ramirez-Velez R, Cadore EL, Abizanda P, Gomez-Pavon J, Izquierdo M. Dose-Response Relationship Between Exercise Duration and Enhanced Function and Cognition in Acutely Hospitalized Older Adults: A Secondary Analysis of a Randomized Clinical Trial. *Innov Aging*. 2024; 8: igae053 doi: 10.1093/geroni/igae053 [PubMed: 38939651]

833. Su J, Jiang Y, Fan X, Tao R, Wu M, Lu Y, Hua Y, Jin J, Guo Y, Lv J, Pei P, et al. Association between physical activity and cancer risk among Chinese adults: a 10-year prospective study. *Int J Behav Nutr Phys Act*. 2022; 19: 150. doi: 10.1186/s12966-022-01390-1 [PubMed: 36510257]

834. Merchant RA, Aprahamian I, Woo J, Vellas B, Morley JE. Editorial: Resilience And Successful Aging. *J Nutr Health Aging*. 2022; 26: 652–656. DOI: 10.1007/s12603-022-1818-4 [PubMed: 35842754]

835. Cesari M, Araujo de Carvalho I, Amuthavalli Thiagarajan J, Cooper C, Martin FC, Reginster JY, Vellas B, Beard JR. Evidence for the Domains Supporting the Construct of Intrinsic Capacity. *J Gerontol A Biol Sci Med Sci.* 2018; 73: 1653–1660. [PubMed: 29408961]

836. Beard JR, Si Y, Liu Z, Chenoweth L, Hanewald K. Intrinsic Capacity: Validation of a New WHO Concept for Healthy Aging in a Longitudinal Chinese Study. *J Gerontol A Biol Sci Med Sci.* 2022; 77: 94–100. [PubMed: 34343305]

837. Veronese N, Honvo G, Amuthavalli Thiagarajan J, Rizzoli R, Cooper C, Bruyere O, Mikton C, Sumi Y, Diaz T, Reginster JY, Banerjee A, et al. Attributes and definitions of locomotor capacity in older people: a World Health Organisation (WHO) locomotor capacity working group meeting report. *Aging Clin Exp Res.* 2022; 34: 481–483. DOI: 10.1007/s40520-022-02080-5 [PubMed: 35133612]

838. Dhakal, A, Bobrin, BD. StatPearls. Treasure Island (FL): StatPearls Publishing; 2025.

839. Bautmans I, Knoop V, Amuthavalli Thiagarajan J, Maier AB, Beard JR, Freiberger E, Belsky D, Aubertin-Leheudre M, Mikton C, Cesari M, Sumi Y, et al. WHO working definition of vitality capacity for healthy longevity monitoring. *Lancet Healthy Longev.* 2022; 3: e789–e796. DOI: 10.1016/S2666-7568(22)00200-8 [PubMed: 36356628]

840. Jones R, Taylor TL, Mankowski RT, Dodds F, Hankes M, Hobson J, Lin Y, Saffold K, Sint Jago SC, Tharpe MA, Zumbro EL, et al. Exercise training to preserve vitality capacity in ageing. *Exp Physiol.* 2024. [PubMed: 39504077]

841. Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. *Sports Med.* 1986; 3: 346–356. [PubMed: 3529283]

842. Wasfy MM, Lee IM. Examining the Dose-Response Relationship between Physical Activity and Health Outcomes. *NEJM Evid.* 2022; 1 EVIDra2200190 [PubMed: 38319830]

843. Wasfy MM, Baggish AL. Exercise Dose in Clinical Practice. *Circulation.* 2016; 133: 2297–2313. DOI: 10.1161/CIRCULATIONAHA.116.018093 [PubMed: 27267537]

844. Ekelund U, Dalene KE, Tarp J, Lee IM. Physical activity and mortality: what is the dose response and how big is the effect?. *Br J Sports Med.* 2020; 54: 1125–1126. [PubMed: 31964630]

845. Garcia L, Pearce M, Abbas A, Mok A, Strain T, Ali S, Crippa A, Dempsey PC, Golubic R, Kelly P, Laird Y, et al. Non-occupational physical activity and risk of cardiovascular disease, cancer and mortality outcomes: a dose-response meta-analysis of large prospective studies. *Br J Sports Med.* 2023; 57: 979–989. DOI: 10.1136/bjsports-2022-105669 [PubMed: 36854652]

846. Izquierdo-Gomez R, Martinez-Gomez D, Shields N, Del Rosario Ortola-Vidal M, Rodriguez-Artalejo F, Cabanas-Sanchez V. The role of physical activity in the association between disability and mortality among US older adults: a nationwide prospective cohort study. *Geroscience.* 2024; 46: 3275–3285. DOI: 10.1007/s11357-024-01072-9 [PubMed: 38252359]

847. Moore AZ, Simonsick EM, Landman B, Schrack J, Wanigatunga AA, Ferrucci L. Correlates of life course physical activity in participants of the Baltimore longitudinal study of aging. *Aging Cell.* 2024; 23 e14078 doi: 10.1111/acel.14078 [PubMed: 38226778]

848. Webber BJ, Piercy KL, Hyde ET, Whitfield GP. Association of Muscle-Strengthening and Aerobic Physical Activity With Mortality in US Adults Aged 65 Years or Older. *JAMA Netw Open.* 2022; 5 e2236778 doi: 10.1001/jamanetworkopen.2022.36778 [PubMed: 36251297]

849. Ma T, Sirard J, Yang L, Li Y, Tsang S, Fu A. Revisiting the concept of bout: associations of moderate-to-vigorous physical activity sessions and non-sessions with mortality. *Int J Behav Nutr Phys Act.* 2024; 21: 81. doi: 10.1186/s12966-024-01631-5 [PubMed: 39075398]

850. Tarp J, Dalene KE, Fagerland MW, Steene-Johannessen J, Hansen BH, Anderssen SA, Hagstromer M, Dohrn IM, Dempsey PC, Wijndaele K, Brage S, et al. Physical Activity Volume, Intensity, and Mortality: Harmonized Meta-Analysis of Prospective Cohort Studies. *Am J Prev Med.* 2024; 67: 887–896. [PubMed: 39089430]

851. Manini TM, Everhart JE, Patel KV, Schoeller DA, Colbert LH, Visser M, Tylavsky F, Bauer DC, Goodpaster BH, Harris TB. Daily activity energy expenditure and mortality among older adults. *JAMA.* 2006; 296: 171–179. [PubMed: 16835422]

852. Ekelund U, Sanchez-Lastra MA, Dalene KE, Tarp J. Dose-response associations, physical activity intensity and mortality risk: A narrative review. *J Sport Health Sci.* 2024; 13: 24–29. DOI: 10.1016/j.jshs.2023.09.006 [PubMed: 37734548]

853. Ahmadi MN, Clare PJ, Katzmarzyk PT, Del Pozo Cruz B, Lee IM, Stamatakis E. Vigorous physical activity, incident heart disease, and cancer: how little is enough?. *Eur Heart J*. 2022; 43: 4801–4814. DOI: 10.1093/eurheartj/eac572 [PubMed: 36302460]

854. Cillekens B, Coenen P, Huysmans MA, Holtermann A, Troiano RP, Mork PJ, Krokstad S, Clays E, De Bacquer D, Aadahl M, Karhus LL, et al. Should workers be physically active after work? Associations of leisure-time physical activity with cardiovascular and all-cause mortality across occupational physical activity levels-An individual participant data meta-analysis. *J Sport Health Sci*. 2024; 100987 doi: 10.1016/j.jshs.2024.100987 [PubMed: 39277081]

855. Coenen P, Huysmans MA, Holtermann A, Troiano RP, Mork PJ, Krokstad S, Clays E, Cillekens B, De Bacquer D, Aadahl M, Karhus LL, et al. Associations of occupational and leisure-time physical activity with all-cause mortality: an individual participant data meta-analysis. *Br J Sports Med*. 2024; 58: 1527–1538. DOI: 10.1136/bjsports-2024-108117 [PubMed: 39255999]

856. Martinez-Gomez D, Cabanas-Sanchez V, Yu T, Rodriguez-Artalejo F, Ding D, Lee IM, Ekelund U. Long-term leisure-time physical activity and risk of all-cause and cardiovascular mortality: dose-response associations in a prospective cohort study of 210 327 Taiwanese adults. *Br J Sports Med*. 2022; 56: 919–926. [PubMed: 35387777]

857. Andersen LB, Schnohr P, Schroll M, Hein HO. All-cause mortality associated with physical activity during leisure time, work, sports, and cycling to work. *Arch Intern Med*. 2000; 160: 1621–1628. [PubMed: 10847255]

858. Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Berrington de Gonzalez A, Hartge P, Adami HO, et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. *JAMA Intern Med*. 2016; 176: 816–825. DOI: 10.1001/jamaintermmed.2016.1548 [PubMed: 27183032]

859. Lavery JA, Boutros PC, Knight D, Tammela T, Moskowitz CS, Jones LW. Association of exercise with pan-cancer incidence and overall survival. *Cancer Cell*. 2024; 42: 169–171. DOI: 10.1016/j.ccr.2023.12.007 [PubMed: 38181796]

860. Matthews CE, Moore SC, Arem H, Cook MB, Trabert B, Hakansson N, Larsson SC, Wolk A, Gapstur SM, Lynch BM, Milne RL, et al. Amount and Intensity of Leisure-Time Physical Activity and Lower Cancer Risk. *J Clin Oncol*. 2020; 38: 686–697. DOI: 10.1200/JCO.19.02407 [PubMed: 31877085]

861. Liu L, Shi Y, Li T, Qin Q, Yin J, Pang S, Nie S, Wei S. Leisure time physical activity and cancer risk: evaluation of the WHO's recommendation based on 126 high-quality epidemiological studies. *Br J Sports Med*. 2016; 50: 372–378. [PubMed: 26500336]

862. Fiuza-Luces C, Valenzuela PL, Galvez BG, Ramirez M, Lopez-Soto A, Simpson RJ, Lucia A. The effect of physical exercise on anticancer immunity. *Nat Rev Immunol*. 2024; 24: 282–293. [PubMed: 37794239]

863. Dighriri A, Timraz M, Rosaini ND, Aba Alkhayl FF, Boyle JG, Logan G, Gray SR. The impact of the time of day on metabolic responses to exercise in adults: A systematic and meta-analysis review. *Chronobiol Int*. 2024; 41: 1377–1388. [PubMed: 39445650]

864. Feng H, Yang L, Liang YY, Ai S, Liu Y, Liu Y, Jin X, Lei B, Wang J, Zheng N, Chen X, et al. Associations of timing of physical activity with all-cause and cause-specific mortality in a prospective cohort study. *Nat Commun*. 2023; 14: 930. doi: 10.1038/s41467-023-36546-5 [PubMed: 36805455]

865. Polo-Lopez A, Calatayud J, Palau P, Lopez-Bueno L, Nunez-Cortes R, Andersen LL, Lopez-Bueno R. Joint associations of handgrip strength and physical activity with incident cardiovascular disease and overall mortality in the UK Biobank. *Clin Nutr*. 2024; 43: 218–224. [PubMed: 39504675]

866. Dunstan DW, Dogra S, Carter SE, Owen N. Sit less and move more for cardiovascular health: emerging insights and opportunities. *Nat Rev Cardiol*. 2021; 18: 637–648. [PubMed: 34017139]

867. Pinto AJ, Bergouignan A, Dempsey PC, Roschel H, Owen N, Gualano B, Dunstan DW. Physiology of sedentary behavior. *Physiol Rev*. 2023; 103: 2561–2622. DOI: 10.1152/physrev.00022.2022 [PubMed: 37326297]

868. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, Alter DA. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in

adults: a systematic review and meta-analysis. *Ann Intern Med.* 2015; 162: 123–132. [PubMed: 25599350]

869. Guo C, Zhou Q, Zhang D, Qin P, Li Q, Tian G, Liu D, Chen X, Liu L, Liu F, Cheng C, et al. Association of total sedentary behaviour and television viewing with risk of overweight/obesity, type 2 diabetes and hypertension: A dose-response meta-analysis. *Diabetes Obes Metab.* 2020; 22: 79–90. [PubMed: 31468597]

870. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, Khunti K, Yates T, Biddle SJ. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. *Diabetologia.* 2012; 55: 2895–2905. [PubMed: 22890825]

871. Ekelund U, Tarp J, Fagerland MW, Johannessen JS, Hansen BH, Jefferis BJ, Whincup PH, Diaz KM, Hooker S, Howard VJ, Chernofsky A, et al. Joint associations of accelerometer measured physical activity and sedentary time with all-cause mortality: a harmonised meta-analysis in more than 44 000 middle-aged and older individuals. *Br J Sports Med.* 2020; 54: 1499–1506. DOI: 10.1136/bjsports-2020-103270 [PubMed: 33239356]

872. Henson J, De Craemer M, Yates T. Sedentary behaviour and disease risk. *BMC Public Health.* 2023; 23: 2048 doi: 10.1186/s12889-023-16867-2 [PubMed: 37858149]

873. Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, Troiano RP, Hollenbeck A, Schatzkin A. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. *Am J Clin Nutr.* 2012; 95: 437–445. DOI: 10.3945/ajcn.111.019620 [PubMed: 22218159]

874. Li S, Lear SA, Rangarajan S, Hu B, Yin L, Bangdiwala SI, Alhabib KF, Rosengren A, Gupta R, Mony PK, Wielgosz A, et al. Association of Sitting Time With Mortality and Cardiovascular Events in High-Income, Middle-Income, and Low-Income Countries. *JAMA Cardiol.* 2022; 7: 796–807. DOI: 10.1001/jamacardio.2022.1581 [PubMed: 35704349]

875. Patterson R, McNamara E, Tainio M, de Sa TH, Smith AD, Sharp SJ, Edwards P, Woodcock J, Brage S, Wijndaele K. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. *Eur J Epidemiol.* 2018; 33: 811–829. DOI: 10.1007/s10654-018-0380-1 [PubMed: 29589226]

876. Ekelund U, Brown WJ, Steene-Johannessen J, Fagerland MW, Owen N, Powell KE, Bauman AE, Lee IM. Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. *Br J Sports Med.* 2019; 53: 886–894. [PubMed: 29991570]

877. Zhao R, Bu W, Chen Y, Chen X. The Dose-Response Associations of Sedentary Time with Chronic Diseases and the Risk for All-Cause Mortality Affected by Different Health Status: A Systematic Review and Meta-Analysis. *J Nutr Health Aging.* 2020; 24: 63–70. [PubMed: 31886810]

878. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, Bauman A, Lee IM, Lancet Physical Activity Series 2 Executive C, and Lancet Sedentary Behaviour Working G. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. *Lancet.* 2016; 388: 1302–1310. [PubMed: 27475271]

879. Ahmadi MN, Blodgett JM, Atkin AJ, Chan HW, Del Pozo Cruz B, Suorsa K, Bakker EA, Pulsford RM, Mielke GI, Johansson PJ, Hettiarachchi P, et al. Relationship of device measured physical activity type and posture with cardiometabolic health markers: pooled dose-response associations from the Prospective Physical Activity, Sitting and Sleep Consortium. *Diabetologia.* 2024; 67: 1051–1065. DOI: 10.1007/s00125-024-06090-y [PubMed: 38478050]

880. Koemel NA, Ahmadi MN, Biswas RK, Koster A, Atkin AJ, Sabag A, Stamatakis E. Can incidental physical activity offset the deleterious associations of sedentary behaviour with major adverse cardiovascular events?. *Eur J Prev Cardiol.* 2025; 32: 77–85. [PubMed: 39325719]

881. Rezende LFM, Ahmadi M, Ferrari G, Del Pozo Cruz B, Lee IM, Ekelund U, Stamatakis E. Device-measured sedentary time and intensity-specific physical activity in relation to all-cause and cardiovascular disease mortality: the UK Biobank cohort study. *Int J Behav Nutr Phys Act.* 2024; 21: 68. doi: 10.1186/s12966-024-01615-5 [PubMed: 38961452]

882. Brakenridge CJ, Koster A, de Galan BE, Carver A, Dumuid D, Dzakpasu FQS, Eussen S, Savelberg H, Bosma H, Owen N, Schaper NC, et al. Associations of 24 h time-use compositions of sitting, standing, physical activity and sleeping with optimal cardiometabolic risk and glycaemic control: The Maastricht Study. *Diabetologia*. 2024; 67: 1356–1367. DOI: 10.1007/s00125-024-06145-0 [PubMed: 38656371]

883. Smirnova E, Leroux A, Cao Q, Tabacu L, Zipunnikov V, Crainiceanu C, Urbanek JK. The Predictive Performance of Objective Measures of Physical Activity Derived From Accelerometry Data for 5-Year All-Cause Mortality in Older Adults: National Health and Nutritional Examination Survey 2003-2006. *J Gerontol A Biol Sci Med Sci*. 2020; 75: 1779–1785. DOI: 10.1093/gerona/glz193 [PubMed: 31504213]

884. Pyrkov TV, Getmantsev E, Zhurov B, Avchaciov K, Pyatnitskiy M, Menshikov L, Khodova K, Gudkov AV, Fedichev PO. Quantitative characterization of biological age and frailty based on locomotor activity records. *Aging (Albany NY)*. 2018; 10: 2973–2990. DOI: 10.18632/aging.101603 [PubMed: 30362959]

885. Ekelund U, Tarp J, Sanchez-Lastra MA, Dalene KE. Physical activity, sedentary time and health - a narrative review with new insights. *Dan Med J*. 2024; 71 A06240433 [PubMed: 39575942]

886. Banach M, Lewek J, Surma S, Penson PE, Sahebkar A, Martin SS, Bajraktari G, Henein MY, Reiner Z, Bielecka-Dabrowa A, Bytyci I. The association between daily step count and all-cause and cardiovascular mortality: a meta-analysis. *Eur J Prev Cardiol*. 2023; 30: 1975–1985. [PubMed: 37555441]

887. Lee IM, Shiroma EJ, Kamada M, Bassett DR, Matthews CE, Buring JE. Association of Step Volume and Intensity With All-Cause Mortality in Older Women. *JAMA Intern Med*. 2019; 179: 1105–1112. DOI: 10.1001/jamainternmed.2019.0899 [PubMed: 31141585]

888. Master H, Annis J, Huang S, Beckman JA, Ratsimbazafy F, Marginean K, Carroll R, Natarajan K, Harrell FE, Roden DM, Harris P, et al. Association of step counts over time with the risk of chronic disease in the All of Us Research Program. *Nat Med*. 2022; 28: 2301–2308. DOI: 10.1038/s41591-022-02012-w [PubMed: 36216933]

889. Paluch AE, Bajpai S, Bassett DR, Carnethon MR, Ekelund U, Evenson KR, Galuska DA, Jefferis BJ, Kraus WE, Lee IM, Matthews CE, et al. Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts. *Lancet Public Health*. 2022; 7: e219–e228. DOI: 10.1016/S2468-2667(21)00302-9 [PubMed: 35247352]

890. Ramsey KA, Meskers CGM, Maier AB. Every step counts: synthesising reviews associating objectively measured physical activity and sedentary behaviour with clinical outcomes in community-dwelling older adults. *Lancet Healthy Longev*. 2021; 2: e764–e772. [PubMed: 36098033]

891. Saint-Maurice PF, Troiano RP, Bassett DR, Graubard BI, Carlson SA, Shiroma EJ, Fulton JE, Matthews CE. Association of Daily Step Count and Step Intensity With Mortality Among US Adults. *JAMA*. 2020; 323: 1151–1160. DOI: 10.1001/jama.2020.1382 [PubMed: 32207799]

892. Stens NA, Bakker EA, Manas A, Buffart LM, Ortega FB, Lee DC, Thompson PD, Thijssen DHJ, Eijsvogels TMH. Relationship of Daily Step Counts to All-Cause Mortality and Cardiovascular Events. *J Am Coll Cardiol*. 2023; 82: 1483–1494. [PubMed: 37676198]

893. Ahmadi MN, Rezende LFM, Ferrari G, Del Pozo Cruz B, Lee IM, Stamatakis E. Do the associations of daily steps with mortality and incident cardiovascular disease differ by sedentary time levels? A device-based cohort study. *Br J Sports Med*. 2024; 58: 261–268. DOI: 10.1136/bjsports-2023-107221 [PubMed: 38442950]

894. Xu C, Jia J, Zhao B, Yuan M, Luo N, Zhang F, Wang H. Objectively measured daily steps and health outcomes: an umbrella review of the systematic review and meta-analysis of observational studies. *BMJ Open*. 2024; 14 e088524 doi: 10.1136/bmjopen-2024-088524 [PubMed: 39384238]

895. Del Pozo Cruz B, Ahmadi MN, Lee IM, Stamatakis E. Prospective Associations of Daily Step Counts and Intensity With Cancer and Cardiovascular Disease Incidence and Mortality and All-Cause Mortality. *JAMA Intern Med*. 2022; 182: 1139–1148. DOI: 10.1001/jamainternmed.2022.4000 [PubMed: 36094529]

896. Del Pozo Cruz B, Ahmadi M, Naismith SL, Stamatakis E. Association of Daily Step Count and Intensity With Incident Dementia in 78 430 Adults Living in the UK. *JAMA Neurol*. 2022; 79: 1059–1063. DOI: 10.1001/jamaneurol.2022.2672 [PubMed: 36066874]

897. Bizzozero-Peroni B, Diaz-Goni V, Jimenez-Lopez E, Rodriguez-Gutierrez E, Sequi-Dominguez I, Nunez de Arenas-Arroyo S, Lopez-Gil JF, Martinez-Vizcaino V, Mesas AE. Daily Step Count and Depression in Adults: A Systematic Review and Meta-Analysis. *JAMA Netw Open*. 2024; 7:e2451208 doi: 10.1001/jamanetworkopen.2024.51208 [PubMed: 39680407]

898. Stamatakis E, Ahmadi MN, Friedenreich CM, Blodgett JM, Koster A, Holtermann A, Atkin A, Rangul V, Sherar LB, Teixeira-Pinto A, Ekelund U, et al. Vigorous Intermittent Lifestyle Physical Activity and Cancer Incidence Among Nonexercising Adults: The UK Biobank Accelerometry Study. *JAMA Oncol*. 2023; 9: 1255–1259. DOI: 10.1001/jamaoncol.2023.1830 [PubMed: 37498576]

899. Stamatakis E, Ahmadi MN, Gill JMR, Thogersen-Ntoumani C, Gibala MJ, Doherty A, Hamer M. Association of wearable device-measured vigorous intermittent lifestyle physical activity with mortality. *Nat Med*. 2022; 28: 2521–2529. DOI: 10.1038/s41591-022-02100-x [PubMed: 36482104]

900. Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, Whincup P, Diaz KM, Hooker SP, Chernofsky A, Larson MG, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. *BMJ*. 2019; 366 l4570 doi: 10.1136/bmj.l4570 [PubMed: 31434697]

901. Nes BM, Gutvik CR, Lavie CJ, Nauman J, Wisloff U. Personalized Activity Intelligence (PAI) for Prevention of Cardiovascular Disease and Promotion of Physical Activity. *Am J Med*. 2017; 130: 328–336. [PubMed: 27984009]

902. Nauman J, Franklin BA, Nes BM, Sallis RE, Sawada SS, Marinovic J, Stensvold D, Lavie CJ, Tari AR, Wisloff U. Association Between Personal Activity Intelligence and Mortality: Population-Based China Kadoorie Biobank Study. *Mayo Clin Proc*. 2022; 97: 668–681. [PubMed: 34865822]

903. Stamatakis E, Ekelund U, Ding D, Hamer M, Bauman AE, Lee IM. Is the time right for quantitative public health guidelines on sitting? A narrative review of sedentary behaviour research paradigms and findings. *Br J Sports Med*. 2019; 53: 377–382. DOI: 10.1136/bjsports-2018-099131 [PubMed: 29891615]

904. Doherty C, Baldwin M, Keogh A, Caulfield B, Argent R. Keeping Pace with Wearables: A Living Umbrella Review of Systematic Reviews Evaluating the Accuracy of Consumer Wearable Technologies in Health Measurement. *Sports Med*. 2024; 54: 2907–2926. DOI: 10.1007/s40279-024-02077-2 [PubMed: 39080098]

905. Shailendra P, Baldock KL, Li LSK, Bennie JA, Boyle T. Resistance Training and Mortality Risk: A Systematic Review and Meta-Analysis. *Am J Prev Med*. 2022; 63: 277–285. [PubMed: 35599175]

906. Westcott WL. Resistance training is medicine: effects of strength training on health. *Curr Sports Med Rep*. 2012; 11: 209–216. [PubMed: 22777332]

907. Fragala MS, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, Ryan ED. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. *J Strength Cond Res*. 2019; 33: 2019–2052. [PubMed: 31343601]

908. Liu Y, Lee DC, Li Y, Zhu W, Zhang R, Sui X, Lavie CJ, Blair SN. Associations of Resistance Exercise with Cardiovascular Disease Morbidity and Mortality. *Med Sci Sports Exerc*. 2019; 51: 499–508. DOI: 10.1249/MSS.0000000000001822 [PubMed: 30376511]

909. Momma H, Kawakami R, Honda T, Sawada SS. Muscle-strengthening activities are associated with lower risk and mortality in major non-communicable diseases: a systematic review and meta-analysis of cohort studies. *Br J Sports Med*. 2022; 56: 755–763. DOI: 10.1136/bjsports-2021-105061 [PubMed: 35228201]

910. Kang DW, Dawson JK, Barnes O, Wilson RL, Norris MK, Gonzalo-Encabo P, Christopher CN, Ficarra S, Dieli-Conwright CM. Resistance Exercise and Skeletal Muscle-Related Outcomes in Patients with Cancer: A Systematic Review. *Med Sci Sports Exerc*. 2024; 56: 1747–1758. [PubMed: 38650124]

911. Abou Sawan S, Nunes EA, Lim C, McKendry J, Phillips SM. The Health Benefits of Resistance Exercise: Beyond Hypertrophy and Big Weights. *Exercise, Sport and Movement*. 2023; 1

912. Choi Y, Kim D, Kim SK. Effects of Physical Activity on Body Composition, Muscle Strength, and Physical Function in Old Age: Bibliometric and Meta-Analyses. *Healthcare (Basel)*. 2024; 12 doi: 10.3390/healthcare12020197 [PubMed: 38255085]

913. Saeidifar F, Medina-Inojosa JR, West CP, Olson TP, Somers VK, Bonikowske AR, Prokop LJ, Vinciguerra M, Lopez-Jimenez F. The association of resistance training with mortality: A systematic review and meta-analysis. *Eur J Prev Cardiol*. 2019; 26: 1647–1665. [PubMed: 31104484]

914. Stamatakis E, Lee IM, Bennie J, Freeston J, Hamer M, O'Donovan G, Ding D, Bauman A, Mavros Y. Does Strength-Promoting Exercise Confer Unique Health Benefits? A Pooled Analysis of Data on 11 Population Cohorts With All-Cause, Cancer, and Cardiovascular Mortality Endpoints. *Am J Epidemiol*. 2018; 187: 1102–1112. [PubMed: 29099919]

915. Bennie JA, Shakespear-Druery J, De Cocker K. Muscle-strengthening Exercise Epidemiology: a New Frontier in Chronic Disease Prevention. *Sports Med Open*. 2020; 6: 40. doi: 10.1186/s40798-020-00271-w [PubMed: 32844333]

916. Paluch AE, Boyer WR, Franklin BA, Laddu D, Lobelo F, Lee DC, McDermott MM, Swift DL, Webel AR, Lane A, on behalf the American Heart Association Council on L, Cardiometabolic H, Council on Arteriosclerosis T, Vascular B, Council on Clinical C, Council on C, Stroke N, Council on E, Prevention, and Council on Peripheral Vascular D. Resistance Exercise Training in Individuals With and Without Cardiovascular Disease: 2023 Update: A Scientific Statement From the American Heart Association. *Circulation*. 2024; 149: e217–e231. DOI: 10.1161/CIR.0000000000001189 [PubMed: 38059362]

917. Hardee JP, Porter RR, Sui X, Archer E, Lee IM, Lavie CJ, Blair SN. The effect of resistance exercise on all-cause mortality in cancer survivors. *Mayo Clin Proc*. 2014; 89: 1108–1115. DOI: 10.1016/j.mayocp.2014.03.018 [PubMed: 24958698]

918. Kraschnewski JL, Sciamanna CN, Poger JM, Rovniak LS, Lehman EB, Cooper AB, Ballentine NH, Ciccolo JT. Is strength training associated with mortality benefits? A 15year cohort study of US older adults. *Prev Med*. 2016; 87: 121–127. [PubMed: 26921660]

919. Cunha PM, Werneck AO, Santos LD, Oliveira MD, Zou L, Schuch FB, Cyrino ES. Can resistance training improve mental health outcomes in older adults? A systematic review and meta-analysis of randomized controlled trials. *Psychiatry Res*. 2024; 333 115746 [PubMed: 38281452]

920. Giovannucci EL, Rezende LFM, Lee DH. Muscle-strengthening activities and risk of cardiovascular disease, type 2 diabetes, cancer and mortality: A review of prospective cohort studies. *J Intern Med*. 2021; 290: 789–805. [PubMed: 34120373]

921. Bennie JA, Lee DC, Brellenthin AG, De Cocker K. Muscle-strengthening exercise and prevalent hypertension among 1.5 million adults: a little is better than none. *J Hypertens*. 2020; 38: 1466–1473. [PubMed: 32102048]

922. Currier BS, McLeod JC, Banfield L, Beyene J, Welton NJ, D'Souza AC, Keogh JAJ, Lin L, Coletta G, Yang A, Colenso-Semple L, et al. Resistance training prescription for muscle strength and hypertrophy in healthy adults: a systematic review and Bayesian network meta-analysis. *Br J Sports Med*. 2023; 57: 1211–1220. DOI: 10.1136/bjsports-2023-106807 [PubMed: 37414459]

923. Olsen RJ, Hasan SS, Woo JJ, Nawabi DH, Ramkumar PN. The Fundamentals and Applications of Wearable Sensor Devices in Sports Medicine: A Scoping Review. *Arthroscopy*. 2024. [PubMed: 38331364]

924. Kim Y, White T, Wijndaele K, Westgate K, Sharp SJ, Helge JW, Wareham NJ, Brage S. The combination of cardiorespiratory fitness and muscle strength, and mortality risk. *Eur J Epidemiol*. 2018; 33: 953–964. DOI: 10.1007/s10654-018-0384-x [PubMed: 29594847]

925. Brellenthin AG, Bennie JA, Lee DC. Aerobic or Muscle-Strengthening Physical Activity: Which Is Better for Health?. *Curr Sports Med Rep*. 2022; 21: 272–279. DOI: 10.1249/JSR.0000000000000981 [PubMed: 35946846]

926. O'Keefe JH, O'Keefe EL, Eckert R, Lavie CJ. Training Strategies to Optimize Cardiovascular Durability and Life Expectancy. *Mo Med*. 2023; 120: 155–162. [PubMed: 37091937]

927. Coleman CJ, McDonough DJ, Pope ZC, Pope CA. Dose-response association of aerobic and muscle-strengthening physical activity with mortality: a national cohort study of 416 420 US adults. *Br J Sports Med*. 2022; doi: 10.1136/bjsports-2022-105519 [PubMed: 35953241]

928. Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. *Brain Sci.* 2023; 13 doi: 10.3390/brainsci13121610 [PubMed: 38137058]

929. Lee J, Kim HJ. Normal Aging Induces Changes in the Brain and Neurodegeneration Progress: Review of the Structural, Biochemical, Metabolic, Cellular, and Molecular Changes. *Front Aging Neurosci.* 2022; 14 931536 doi: 10.3389/fnagi.2022.931536 [PubMed: 35847660]

930. Tsai SY. Lost in translation: challenges of current pharmacotherapy for sarcopenia. *Trends Mol Med.* 2024; 30: 1047–1060. [PubMed: 38880726]

931. Boccardi V. Sarcopenia: A dive into metabolism to promote a multimodal, preventive, and regenerative approach. *Mech Ageing Dev.* 2024; 219 111941 [PubMed: 38750969]

932. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. *Physiol Rev.* 2019; 99: 427–511. DOI: 10.1152/physrev.00061.2017 [PubMed: 30427277]

933. Sayer AA, Cooper R, Arai H, Cawthon PM, Ntsama Essomba MJ, Fielding RA, Grounds MD, Witham MD, Cruz-Jentoft AJ. Sarcopenia. *Nat Rev Dis Primers.* 2024; 10: 68. [PubMed: 39300120]

934. Miri S, Farhadi B, Takasi P, Ghorbani Vajargah P, Karkhah S. Physical independence and related factors among older adults: a systematic review and meta-analysis. *Ann Med Surg (Lond).* 2024; 86: 3400–3408. DOI: 10.1097/MS9.0000000000002100 [PubMed: 38846859]

935. Fleg JL, Strait J. Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. *Heart Fail Rev.* 2012; 17: 545–554. DOI: 10.1007/s10741-011-9270-2 [PubMed: 21809160]

936. Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. *Heart Fail Clin.* 2012; 8: 143–164. DOI: 10.1016/j.hfc.2011.08.011 [PubMed: 22108734]

937. Murray KO, Mahoney SA, Venkatasubramanian R, Seals DR, Clayton ZS. Aging, aerobic exercise, and cardiovascular health: Barriers, alternative strategies and future directions. *Exp Gerontol.* 2023; 173 112105 doi: 10.1016/j.exger.2023.112105 [PubMed: 36731386]

938. Ahmed B, Rahman AA, Lee S, Malhotra R. The Implications of Aging on Vascular Health. *Int J Mol Sci.* 2024; 25 doi: 10.3390/ijms252011188 [PubMed: 39456971]

939. Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. *Ann N Y Acad Sci.* 2017; 1410: 93–106. DOI: 10.1111/nyas.13572 [PubMed: 29265417]

940. Mohebbi R, Shojaa M, Kohl M, von Stengel S, Jakob F, Kerschan-Schindl K, Lange U, Peters S, Thomasius F, Uder M, Kemmler W. Exercise training and bone mineral density in postmenopausal women: an updated systematic review and meta-analysis of intervention studies with emphasis on potential moderators. *Osteoporos Int.* 2023; 34: 1145–1178. DOI: 10.1007/s00198-023-06682-1 [PubMed: 36749350]

941. David K, Narinx N, Antonio L, Evenepoel P, Claessens F, Decallonne B, Vanderschueren D. Bone health in ageing men. *Rev Endocr Metab Disord.* 2022; 23: 1173–1208. [PubMed: 35841491]

942. Cheng N, Josse AR. Dairy and Exercise for Bone Health: Evidence from Randomized Controlled Trials and Recommendations for Future Research. *Curr Osteoporos Rep.* 2024; 22: 502–514. [PubMed: 39269594]

943. Ning Y, Chen M, An J, Tang M, Tse G, Chan JSK, Zhao C, Liu Y, Lei X, Qiang H, Bai C, et al. Association between “weekend warrior” physical activity and the incidence of neurodegenerative diseases. *Neurotherapeutics.* 2024; 21 e00430 doi: 10.1016/j.neurot.2024.e00430 [PubMed: 39129094]

944. Sanchez-Sanchez JL, He L, Morales JS, de Souto Barreto P, Jimenez-Pavon D, Carbonell-Baeza A, Casas-Herrero A, Gallardo-Gomez D, Lucia A, Del Pozo Cruz B, Valenzuela PL. Association of physical behaviours with sarcopenia in older adults: a systematic review and meta-analysis of observational studies. *Lancet Healthy Longev.* 2024; 5: e108–e119. [PubMed: 38310891]

945. McKendry J, Coletta G, Nunes EA, Lim C, Phillips SM. Mitigating disuse-induced skeletal muscle atrophy in ageing: Resistance exercise as a critical countermeasure. *Exp Physiol.* 2024; 109: 1650–1662. DOI: 10.1113/EP091937 [PubMed: 39106083]

946. Ding L, Yang F. Muscle weakness is related to slip-initiated falls among community-dwelling older adults. *J Biomech.* 2016; 49: 238–243. [PubMed: 26723754]

947. Gauvain JB, Mandigout S, Pambet M, Monseu M, Gillain P, Gautier J, Annweiler C, Puisieux F. Correlation between Muscle Mass and Physical Activity Level in Older Adults at Risk of Falling: The FITNESS Study. *J Frailty Aging*. 2024; 13: 240–247. [PubMed: 39082768]

948. Rodrigues F, Domingos C, Monteiro D, Morouco P. A Review on Aging, Sarcopenia, Falls, and Resistance Training in Community-Dwelling Older Adults. *Int J Environ Res Public Health*. 2022; 19 doi: 10.3390/ijerph19020874 [PubMed: 35055695]

949. English KL, Paddon-Jones D. Protecting muscle mass and function in older adults during bed rest. *Curr Opin Clin Nutr Metab Care*. 2010; 13: 34–39. DOI: 10.1097/MCO.0b013e328333aa66 [PubMed: 19898232]

950. Aldrich L, Ispoglou T, Prokopidis K, Alqallaf J, Wilson O, Stavropoulos-Kalinoglou A. Acute Sarcopenia: Systematic Review and Meta-Analysis on Its Incidence and Muscle Parameter Shifts During Hospitalisation. *J Cachexia Sarcopenia Muscle*. 2025; 16 e13662 doi: 10.1002/jcsm.13662 [PubMed: 39690131]

951. Welch C, Chen Y, Hartley P, Naughton C, Martinez-Velilla N, Stein D, Romero-Ortuno R. New horizons in hospital-associated deconditioning: a global condition of body and mind. *Age Ageing*. 2024; 53 doi: 10.1093/ageing/afae241 [PubMed: 39497271]

952. Liu J, Xue H, Ma YH, Wang Z. Acute muscle loss in elderly hospitalized patients: Risk factors and adverse clinical outcomes. *Geriatr Nurs*. 2025; 61: 449–454. [PubMed: 39731935]

953. Zanker J, Scott D, Alajlouni D, Kirk B, Bird S, DeBruin D, Vogrin S, Bliuc D, Tran T, Cawthon P, Duque G, et al. Mortality, falls and slow walking speed are predicted by different muscle strength and physical performance measures in women and men. *Arch Gerontol Geriatr*. 2023; 114 105084 [PubMed: 37290229]

954. White DK, Neogi T, Nevitt MC, Peloquin CE, Zhu Y, Boudreau RM, Cauley JA, Ferrucci L, Harris TB, Satterfield SM, Simonsick EM, et al. Trajectories of gait speed predict mortality in well-functioning older adults: the Health, Aging and Body Composition study. *J Gerontol A Biol Sci Med Sci*. 2013; 68: 456–464. DOI: 10.1093/gerona/gls197 [PubMed: 23051974]

955. Shinkai S, Watanabe S, Kumagai S, Fujiwara Y, Amano H, Yoshida H, Ishizaki T, Yukawa H, Suzuki T, Shibata H. Walking speed as a good predictor for the onset of functional dependence in a Japanese rural community population. *Age Ageing*. 2000; 29: 441–446. [PubMed: 11108417]

956. Howlett SE, Rutenberg AD, Rockwood K. The degree of frailty as a translational measure of health in aging. *Nat Aging*. 2021; 1: 651–665. [PubMed: 37117769]

957. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, et al. Gait speed and survival in older adults. *JAMA*. 2011; 305: 50–58. DOI: 10.1001/jama.2010.1923 [PubMed: 21205966]

958. Stanaway FF, Gnjidic D, Blyth FM, Le Couteur DG, Naganathan V, Waite L, Seibel MJ, Handelsman DJ, Sambrook PN, Cumming RG. How fast does the Grim Reaper walk? Receiver operating characteristics curve analysis in healthy men aged 70 and over. *BMJ*. 2011; 343 d7679 doi: 10.1136/bmj.d7679 [PubMed: 22174324]

959. Lo AX, Donnelly JP, McGwin G, Bittner V, Ahmed A, Brown CJ. Impact of gait speed and instrumental activities of daily living on all-cause mortality in adults ≥ 65 years with heart failure. *Am J Cardiol*. 2015; 115: 797–801. DOI: 10.1016/j.amjcard.2014.12.044 [PubMed: 25655868]

960. Sonn U. Longitudinal studies of dependence in daily life activities among elderly persons. *Scand J Rehabil Med Suppl*. 1996; 34: 1–35. [PubMed: 8701230]

961. Elbaz A, Sabia S, Brunner E, Shipley M, Marmot M, Kivimaki M, Singh-Manoux A. Association of walking speed in late midlife with mortality: results from the Whitehall II cohort study. *Age (Dordr)*. 2013; 35: 943–952. DOI: 10.1007/s11357-012-9387-9 [PubMed: 22361996]

962. Franklin BA, Brinks J, Sacks R, Trivax J, Friedman H. Reduced walking speed and distance as harbingers of the approaching grim reaper. *Am J Cardiol*. 2015; 116: 313–317. [PubMed: 25972052]

963. Boyer KA, Hayes KL, Umberger BR, Adamczyk PG, Bean JF, Brach JS, Clark BC, Clark DJ, Ferrucci L, Finley J, Franz JR, et al. Age-related changes in gait biomechanics and their impact on the metabolic cost of walking: Report from a National Institute on Aging workshop. *Exp Gerontol*. 2023; 173 112102 doi: 10.1016/j.exger.2023.112102 [PubMed: 36693530]

964. Gamwell HE, Wait SO, Royster JT, Ritch BL, Powell SC, Skinner JW. Aging and Gait Function: Examination of Multiple Factors that Influence Gait Variability. *Gerontol Geriatr Med.* 2022; 8 23337214221080304 doi: 10.1177/23337214221080304 [PubMed: 35237711]

965. Hulleck AA, Mohan Menoth, Abdallah N, El Rich M, Khalaf K. Present and future of gait assessment in clinical practice: Towards the application of novel trends and technologies. *Front Med Technol.* 2022; 4 901331 doi: 10.3389/fmedt.2022.901331 [PubMed: 36590154]

966. Seo S, Kwon T, Shin M, Jeong H, Yu M, Jeong J, Yu C. Development of sarcopenia assessment system using balance and gait ability: Preliminary tests in the elderly. *Technol Health Care.* 2024; 32: 447–455. DOI: 10.3233/THC-248039 [PubMed: 38759067]

967. Kim DH, Rockwood K. Frailty in Older Adults. *N Engl J Med.* 2024; 391: 538–548. DOI: 10.1056/NEJMra2301292 [PubMed: 39115063]

968. Butler AA, Menant JC, Tiedemann AC, Lord SR. Age and gender differences in seven tests of functional mobility. *J Neuroeng Rehabil.* 2009; 6: 31. doi: 10.1186/1743-0003-6-31 [PubMed: 19642991]

969. Manca A, Fiorito G, Morrone M, Boi A, Mercante B, Martinez G, Ventura L, Delitala AP, Cano A, Catte MG, Solinas G, et al. A novel estimate of biological aging by multiple fitness tests is associated with risk scores for age-related diseases. *Front Physiol.* 2023; 14 1164943 doi: 10.3389/fphys.2023.1164943 [PubMed: 37228822]

970. Taylor JA, Greenhaff PL, Bartlett DB, Jackson TA, Duggal NA, Lord JM. Multisystem physiological perspective of human frailty and its modulation by physical activity. *Physiol Rev.* 2023; 103: 1137–1191. DOI: 10.1152/physrev.00037.2021 [PubMed: 36239451]

971. Kwak D, Thompson LV. Frailty: Past, present, and future?. *Sports Med Health Sci.* 2021; 3: 1–10. DOI: 10.1016/j.smhs.2020.11.005 [PubMed: 35782680]

972. Kojima G, Iliffe S, Walters K. Frailty index as a predictor of mortality: a systematic review and meta-analysis. *Age Ageing.* 2018; 47: 193–200. [PubMed: 29040347]

973. de Fatima Ribeiro Silva C, Ohara DG, Matos AP, Pinto A, Pegorari MS. Short Physical Performance Battery as a Measure of Physical Performance and Mortality Predictor in Older Adults: A Comprehensive Literature Review. *Int J Environ Res Public Health.* 2021; 18 doi: 10.3390/ijerph182010612 [PubMed: 34682359]

974. Woldemariam S, Oberndorfer M, Stein VK, Haider S, Dorner TE. Association between frailty and subsequent disability trajectories among older adults: a growth curve longitudinal analysis from the Survey of Health, Ageing and Retirement in Europe (2004–19). *Eur J Public Health.* 2024; 34: 1184–1191. DOI: 10.1093/eurpub/ckae146 [PubMed: 39313471]

975. Stephan Y, Sutin AR, Luchetti M, Aschwanden D, Karakose S, Terracciano A. Balance, Strength, and Risk of Dementia: Findings From the Health and Retirement Study and the English Longitudinal Study of Ageing. *J Gerontol A Biol Sci Med Sci.* 2024; 79 doi: 10.1093/gerona/glae165 [PubMed: 38918945]

976. Lopponen A, Karavirta L, Finni T, Palmberg L, Portegijs E, Rantanen T, Delecluse C, Rantanainen T. Free-Living Sit-to-Stand Characteristics as Predictors of Lower Extremity Functional Decline among Older Adults. *Med Sci Sports Exerc.* 2024; 56: 1672–1677. DOI: 10.1249/MSS.0000000000003470 [PubMed: 38768057]

977. Brito LB, Ricardo DR, Araujo DS, Ramos PS, Myers J, Araujo CG. Ability to sit and rise from the floor as a predictor of all-cause mortality. *Eur J Prev Cardiol.* 2014; 21: 892–898. [PubMed: 23242910]

978. Araujo CG, de Souza ESCG, Laukkanen JA, Fiatarone Singh M, Kunutsor SK, Myers J, Franca JF, Castro CL. Successful 10-second one-legged stance performance predicts survival in middle-aged and older individuals. *Br J Sports Med.* 2022; 56: 975–980. [PubMed: 35728834]

979. Tanaka T, Hase K, Mori K, Wakida M, Arima Y, Kubo T, Taguchi M. Stair-descent phenotypes in community-dwelling older adults determined using high-level balance tasks. *Aging Clin Exp Res.* 2025; 37: 34. doi: 10.1007/s40520-025-02929-5 [PubMed: 39878920]

980. de Souto Barreto P, Rolland Y, Ferrucci L, Arai H, Bischoff-Ferrari H, Duque G, Fielding RA, Beard JR, Muscedere J, Sierra F, Vellas B, et al. Looking at frailty and intrinsic capacity through a geroscience lens: the ICFSR & Geroscience Task Force. *Nat Aging.* 2023; 3: 1474–1479. DOI: 10.1038/s43587-023-00531-w [PubMed: 37985720]

981. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. *ScientificWorldJournal*. 2001; 1: 323–336. DOI: 10.1100/tsw.2001.58 [PubMed: 12806071]

982. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottsdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, et al. Frailty in older adults: evidence for a phenotype. *J Gerontol A Biol Sci Med Sci*. 2001; 56: M146–156. [PubMed: 11253156]

983. Rose GA, Davies RG, Appadurai IR, Williams IM, Bashir M, Berg RMG, Poole DC, Bailey DM. ‘Fit for surgery’: the relationship between cardiorespiratory fitness and postoperative outcomes. *Exp Physiol*. 2022; 107: 787–799. DOI: 10.1113/EP090156 [PubMed: 35579479]

984. Wang H, Yang R, Xu J, Fang K, Abdelrahim M, Chang L. Sarcopenia as a predictor of postoperative risk of complications, mortality and length of stay following gastrointestinal oncological surgery. *Ann R Coll Surg Engl*. 2021; 103: 630–637. DOI: 10.1308/rcsann.2021.0082 [PubMed: 33739153]

985. Yang Y, Sun M, Chen WM, Wu SY, Zhang J. Adverse postoperative outcomes in elderly patients with sarcopenia. *BMC Geriatr*. 2024; 24: 561. doi: 10.1186/s12877-024-05066-2 [PubMed: 38937671]

986. Afilalo J, Mottillo S, Eisenberg MJ, Alexander KP, Noiseux N, Perrault LP, Morin JF, Langlois Y, Ohayon SM, Monette J, Boivin JF, et al. Addition of frailty and disability to cardiac surgery risk scores identifies elderly patients at high risk of mortality or major morbidity. *Circ Cardiovasc Qual Outcomes*. 2012; 5: 222–228. [PubMed: 22396586]

987. Liu C, Li Y, Xu Y, Hou H. The impact of preoperative skeletal muscle mass index-defined sarcopenia on postoperative complications and survival in gastric cancer: An updated meta-analysis. *Eur J Surg Oncol*. 2024. 109569 [PubMed: 39794171]

988. Weerink LBM, van Leeuwen BL, Kwee TC, Lamoth CJC, van Munster BC, de Bock GH. Co-occurrence of CT based radiological sarcopenia and frailty are related to impaired survival in surgical oncology. *Br J Radiol*. 2025; doi: 10.1093/bjr/tqaf023 [PubMed: 39921891]

989. Butt JH, Petrie MC, Jhund PS, Sattar N, Desai AS, Kober L, Rouleau JL, Swedberg K, Zile MR, Solomon SD, Packer M, et al. Anthropometric measures and adverse outcomes in heart failure with reduced ejection fraction: revisiting the obesity paradox. *Eur Heart J*. 2023; 44: 1136–1153. DOI: 10.1093/eurheartj/ehad083 [PubMed: 36944496]

990. Lee SH, Jo J, Yang JH, Kim SM, Choi KH, Song YB, Jeong DS, Lee JM, Park TK, Hahn JY, Choi SH, et al. Clinical Impact of Sarcopenia Screening on Long-Term Mortality in Patients Undergoing Coronary Bypass Grafting. *J Cachexia Sarcopenia Muscle*. 2024; 15: 2842–2851. DOI: 10.1002/jcsm.13645 [PubMed: 39513369]

991. Lees MJ, Prado CM, Wischmeyer PE, Phillips SM. Skeletal Muscle. *Critical Care Clinics*. 2024.

992. Umbrello M, Formenti P, Artale A, Assandri M, Palandri C, Ponti S, Venco R, Waccher G, Muttini S. Association Between the Ultrasound Evaluation of Muscle Mass and Adverse Outcomes in Critically Ill Patients: A Prospective Cohort Study. *Anesth Analg*. 2025; 140: 427–436. [PubMed: 39804598]

993. Bernabei R, Landi F, Calvani R, Cesari M, Del Signore S, Anker SD, Bejuit R, Bordes P, Cherubini A, Cruz-Jentoft AJ, Di Bari M, et al. Multicomponent intervention to prevent mobility disability in frail older adults: randomised controlled trial (SPRINTT project). *BMJ*. 2022; 377 e068788 doi: 10.1136/bmj-2021-068788 [PubMed: 35545258]

994. Valenzuela PL, Saco-Ledo G, Morales JS, Gallardo-Gomez D, Morales-Palomo F, Lopez-Ortiz S, Rivas-Baeza B, Castillo-Garcia A, Jimenez-Pavon D, Santos-Lozano A, Del Pozo Cruz B, et al. Effects of physical exercise on physical function in older adults in residential care: a systematic review and network meta-analysis of randomised controlled trials. *Lancet Healthy Longev*. 2023; 4: e247–e256. [PubMed: 37182530]

995. Zeng G, Lin Y, Xie P, Lin J, He Y, Wei J. Association between physical activity & sedentary time on frailty in adults with chronic kidney disease: Cross-sectional NHANES study. *Exp Gerontol*. 2024; 195 112557 [PubMed: 39181192]

996. Gill TM. Preserving community mobility in vulnerable older people. *BMJ*. 2022; 377 o1084 [PubMed: 35545267]

997. Lavery JA, Boutros PC, Scott JM, Tammela T, Moskowitz CS, Jones LW. Pan-Cancer Analysis of Postdiagnosis Exercise and Mortality. *J Clin Oncol.* 2023; 41: 4982–4992. DOI: 10.1200/JCO.23.00058 [PubMed: 37651670]

998. Kanemura T, Takeoka T, Sugase T, Urakawa S, Masuike Y, Shinno N, Hara H, Kitakaze M, Kubo M, Mukai Y, Sueda T, et al. Significance of Comprehensive Analysis of Preoperative Sarcopenia Based on Muscle Mass, Muscle Strength, and Physical Function for the Prognosis of Patients with Esophageal Cancer. *Ann Surg Oncol.* 2024; 31: 818–826. [PubMed: 37989955]

999. Cannataro R, Cione E, Bonilla DA, Cerullo G, Angelini F, D'Antona G. Strength training in elderly: An useful tool against sarcopenia. *Front Sports Act Living.* 2022; 4 950949 doi: 10.3389/fspor.2022.950949 [PubMed: 35924210]

1000. Chun SY, Cho YS, Kim HB. Association between reduced muscle mass and poor prognosis of biliary sepsis. *Sci Rep.* 2024; 14: 1857 doi: 10.1038/s41598-024-52502-9 [PubMed: 38253616]

1001. Markakis GE, Lai JC, Karakousis ND, Papatheodoridis GV, Psaltopoulou T, Merli M, Sergentanis TN, Cholongitas E. Sarcopenia As a Predictor of Survival and Complications of Patients With Cirrhosis After Liver Transplantation: A Systematic Review and Meta-Analysis. *Clin Transplant.* 2025; 39 e70088 doi: 10.1111/ctr.70088 [PubMed: 39876624]

1002. Brawner CA, Ehrman JK, Bole S, Kerrigan DJ, Parikh SS, Lewis BK, Gindi RM, Keteyian C, Abdul-Nour K, Keteyian SJ. Inverse Relationship of Maximal Exercise Capacity to Hospitalization Secondary to Coronavirus Disease 2019. *Mayo Clin Proc.* 2021; 96: 32–39. DOI: 10.1016/j.mayocp.2020.10.003 [PubMed: 33413833]

1003. Choi JY, Rhee CK, Kim SH, Jo YS. Muscle Mass Index Decline as a Predictor of Lung Function Reduction in the General Population. *J Cachexia Sarcopenia Muscle.* 2025; 16 e13663 doi: 10.1002/jcsm.13663 [PubMed: 39686869]

1004. Veronese N, Soysal P, Demurtas J, Solmi M, Bruyere O, Christodoulou N, Ramalho R, Fusar-Poli P, Lappas AS, Pinto D, Frederiksen KS, et al. Physical activity and exercise for the prevention and management of mild cognitive impairment and dementia: a collaborative international guideline. *Eur Geriatr Med.* 2023; 14: 925–952. DOI: 10.1007/s41999-023-00858-y [PubMed: 37768499]

1005. Soendenbroe C, Boraxbekk CJ, Mackey AL. Enhancing muscle and brain resilience: The role of prehabilitative exercise in mitigating disuse effects. *J Physiol.* 2025. [PubMed: 39761204]

1006. Prado CM, Phillips SM, Gonzalez MC, Heymsfield SB. Muscle matters: the effects of medically induced weight loss on skeletal muscle. *Lancet Diabetes Endocrinol.* 2024; 12: 785–787. [PubMed: 39265590]

1007. McCarthy D, Berg A. Weight Loss Strategies and the Risk of Skeletal Muscle Mass Loss. *Nutrients.* 2021; 13 doi: 10.3390/nu13072473 [PubMed: 34371981]

1008. Asher L, Aresu M, Falaschetti E, Mindell J. Most older pedestrians are unable to cross the road in time: a cross-sectional study. *Age Ageing.* 2012; 41: 690–694. [PubMed: 22695790]

1009. Seals DR, Justice JN, LaRocca TJ. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. *J Physiol.* 2016; 594: 2001–2024. DOI: 10.1111/jphysiol.2014.282665 [PubMed: 25639909]

1010. Hsu PS, Lee WJ, Peng LN, Lu WH, Meng LC, Hsiao FY, Chen LK. Safeguarding vitality and cognition: The role of sarcopenia in intrinsic capacity decline among octogenarians from multiple cohorts. *J Nutr Health Aging.* 2024; 28 100268 [PubMed: 38810513]

1011. Rosas-Carrasco O, Manrique-Espinoza B, Lopez-Alvarenga JC, Mena-Montes B, Omana-Guzman I. Osteosarcopenia predicts greater risk of functional disability than sarcopenia: a longitudinal analysis of FraDySMex cohort study. *J Nutr Health Aging.* 2024; 28 100368 [PubMed: 39307074]

1012. Joy EA, Briesacher M, Wiegand B. Musculoskeletal Failure. *Am J Lifestyle Med.* 2024; 18: 826–829. DOI: 10.1177/15598276241256878 [PubMed: 39507912]

1013. Izquierdo M, de Souto Barreto P, Arai H, Bischoff-Ferrari HA, Cadore EL, Cesari M, Chen LK, Coen PM, Courneya KS, Duque G, Ferrucci L, et al. Global consensus on optimal exercise recommendations for enhancing healthy longevity in older adults (ICFSR. *J Nutr Health Aging.* 2025; 29 100401 doi: 10.1016/j.jnha.2024.100401 [PubMed: 39743381]

1014. Lopez-Ortiz S, Lista S, Valenzuela PL, Pinto-Fraga J, Carmona R, Caraci F, Caruso G, Toschi N, Emanuele E, Gabelle A, Nistico R, et al. Effects of physical activity and exercise interventions on Alzheimer's disease: an umbrella review of existing meta-analyses. *J Neurol*. 2023; 270: 711–725. [PubMed: 36342524]

1015. Cho Y, Jang H, Kwon S, Oh H. Aerobic, muscle-strengthening, and flexibility physical activity and risks of all-cause and cause-specific mortality: a population-based prospective cohort of Korean adults. *BMC Public Health*. 2023; 23: 1148 doi: 10.1186/s12889-023-15969-1 [PubMed: 37316812]

1016. Araujo CGS, de Souza ESCG, Kunutsor SK, Franklin BA, Laukkanen JA, Myers J, Fiatarone Singh MA, Franca JF, Castro CLB. Reduced Body Flexibility Is Associated With Poor Survival in Middle-Aged Men and Women: A Prospective Cohort Study. *Scand J Med Sci Sports*. 2024; 34: e14708 [PubMed: 39165228]

1017. Zhong YJ, Meng Q, Su CH. Mechanism-Driven Strategies for Reducing Fall Risk in the Elderly: A Multidisciplinary Review of Exercise Interventions. *Healthcare (Basel)*. 2024; 12: doi: 10.3390/healthcare12232394 [PubMed: 39685016]

1018. Thompson WR, Sallis R, Joy E, Jaworski CA, Stuhr RM, Trilk JL. Exercise Is Medicine. *Am J Lifestyle Med*. 2020; 14: 511–523. DOI: 10.1177/1559827620912192 [PubMed: 32922236]

1019. Hedge ET, Brazile TL, Hughson RL, Levine BD. Plasticity of the heart in response to changes in physical activity. *J Physiol*. 2024. [PubMed: 39162309]

1020. Cavalcante BR, Falck RS, Liu-Ambrose T. Editorial: "May the Force (and Size) Be with You": Muscle Mass and Function Are Important Risk Factors for Cognitive Decline and Dementia. *J Nutr Health Aging*. 2023; 27: 926–928. [PubMed: 37997710]

1021. Hu Y, Peng W, Ren R, Wang Y, Wang G. Sarcopenia and mild cognitive impairment among elderly adults: The first longitudinal evidence from CHARLS. *J Cachexia Sarcopenia Muscle*. 2022; 13: 2944–2952. DOI: 10.1002/jcsm.13081 [PubMed: 36058563]

1022. Peng TC, Chen WL, Wu LW, Chang YW, Kao TW. Sarcopenia and cognitive impairment: A systematic review and meta-analysis. *Clin Nutr*. 2020; 39: 2695–2701. [PubMed: 31917049]

1023. Liu M, He P, Ye Z, Zhang Y, Zhou C, Yang S, Zhang Y, Qin X. Association of handgrip strength and walking pace with incident Parkinson's disease. *J Cachexia Sarcopenia Muscle*. 2024; 15: 198–207. DOI: 10.1002/jcsm.13366 [PubMed: 37990960]

1024. Jiang R, Westwater ML, Noble S, Rosenblatt M, Dai W, Qi S, Sui J, Calhoun VD, Scheinost D. Associations between grip strength, brain structure, and mental health in > 40,000 participants from the UK Biobank. *BMC Med*. 2022; 20: 286. doi: 10.1186/s12916-022-02490-2 [PubMed: 36076200]

1025. Zou L, Herold F, Cheval B, Wheeler MJ, Pindus DM, Erickson KI, Raichlen DA, Alexander GE, Muller NG, Dunstan DW, Kramer AF, et al. Sedentary behavior and lifespan brain health. *Trends Cogn Sci*. 2024; 28: 369–382. DOI: 10.1016/j.tics.2024.02.003 [PubMed: 38431428]

1026. Iso-Markku P, Kujala UM, Knittle K, Polet J, Vuksimaa E, Waller K. Physical activity as a protective factor for dementia and Alzheimer's disease: systematic review, meta-analysis and quality assessment of cohort and case-control studies. *Br J Sports Med*. 2022; 56: 701–709. DOI: 10.1136/bjsports-2021-104981 [PubMed: 35301183]

1027. Min J, Cao Z, Duan T, Wang Y, Xu C. Accelerometer-derived 'weekend warrior' physical activity pattern and brain health. *Nat Aging*. 2024; 4: 1394–1402. [PubMed: 39169268]

1028. Faulkner ME, Gong Z, Bilgel M, Laporte JP, Guo A, Bae J, Palchamy E, Kaileh M, Bergeron CM, Bergeron J, Church S, et al. Evidence of association between higher cardiorespiratory fitness and higher cerebral myelination in aging. *Proc Natl Acad Sci U S A*. 2024; 121: e2402813121 doi: 10.1073/pnas.2402813121 [PubMed: 39159379]

1029. Zhang W, Zhou C, Chen A. A systematic review and meta-analysis of the effects of physical exercise on white matter integrity and cognitive function in older adults. *Geroscience*. 2024; 46: 2641–2651. DOI: 10.1007/s11357-023-01033-8 [PubMed: 38108993]

1030. Marseglia A, Dartora C, Samuelsson J, Poulakis K, Mohanty R, Shams S, Lindberg O, Ryden L, Sterner TR, Skoog J, Zettergren A, et al. Biological brain age and resilience in cognitively unimpaired 70-year-old individuals. *Alzheimers Dement*. 2024; doi: 10.1002/alz.14435 [PubMed: 39704304]

1031. Samuelsson J, Marseglia A, Wallengren O, Lindberg O, Dartora C, Cedres N, Shams S, Kern S, Zettergren A, Westman E, Skoog I. Association of body composition with neuroimaging biomarkers and cognitive function; a population-based study of 70-year-olds. *EBioMedicine*. 2025; 112: 105555 doi: 10.1016/j.ebiom.2024.105555 [PubMed: 39788041]

1032. Anstey KJ. Total physical activity matters for brain health. *Nat Aging*. 2024; 4: 1340–1342. [PubMed: 39349625]

1033. O'Donovan G, Lee IM, Hamer M, Stamatakis E. Association of "Weekend Warrior" and Other Leisure Time Physical Activity Patterns With Risks for All-Cause, Cardiovascular Disease, and Cancer Mortality. *JAMA Intern Med*. 2017; 177: 335–342. [PubMed: 28097313]

1034. Shiroma EJ, Lee IM, Schepps MA, Kamada M, Harris TB. Physical Activity Patterns and Mortality: The Weekend Warrior and Activity Bouts. *Med Sci Sports Exerc*. 2019; 51: 35–40. DOI: 10.1249/MSS.0000000000001762 [PubMed: 30138219]

1035. Khurshid S, Al-Alusi MA, Churchill TW, Guseh JS, Ellinor PT. Accelerometer-Derived "Weekend Warrior" Physical Activity and Incident Cardiovascular Disease. *JAMA*. 2023; 330: 247–252. DOI: 10.1001/jama.2023.10875 [PubMed: 37462704]

1036. Boa Sorte Silva NC, Barha CK, Erickson KI, Kramer AF, Liu-Ambrose T. Physical exercise, cognition, and brain health in aging. *Trends Neurosci*. 2024; 47: 402–417. [PubMed: 38811309]

1037. Steves CJ, Mehta MM, Jackson SH, Spector TD. Kicking Back Cognitive Ageing: Leg Power Predicts Cognitive Ageing after Ten Years in Older Female Twins. *Gerontology*. 2016; 62: 138–149. DOI: 10.1159/000441029 [PubMed: 26551663]

1038. Nyberg J, Aberg MA, Schioler L, Nilsson M, Wallin A, Toren K, Kuhn HG. Cardiovascular and cognitive fitness at age 18 and risk of early-onset dementia. *Brain*. 2014; 137: 1514–1523. [PubMed: 24604561]

1039. Horder H, Johansson L, Guo X, Grimby G, Kern S, Ostling S, Skoog I. Midlife cardiovascular fitness and dementia: A 44-year longitudinal population study in women. *Neurology*. 2018; 90: e1298–e1305. DOI: 10.1212/WNL.0000000000005290 [PubMed: 29540588]

1040. Brandhorst S, Longo VD. Exploring juventology: unlocking the secrets of youthspan and longevity programs. *Front Aging*. 2024; 5: 1379289 doi: 10.3389/fragi.2024.1379289 [PubMed: 38638872]

1041. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, Harrington H, Israel S, Levine ME, Schaefer JD, Sugden K, et al. Quantification of biological aging in young adults. *Proc Natl Acad Sci U S A*. 2015; 112: E4104–E4110. DOI: 10.1073/pnas.1506264112 [PubMed: 26150497]

1042. Furrer R, Heim B, Schmid S, Dilbaz S, Adak V, Nordstrom KJV, Ritz D, Steurer SA, Walter J, Handschin C. Molecular control of endurance training adaptation in male mouse skeletal muscle. *Nat Metab*. 2023; 5: 2020–2035. DOI: 10.1038/s42255-023-00891-y [PubMed: 37697056]

1043. Koch LG, Kemi OJ, Qi N, Leng SX, Bijma P, Gilligan LJ, Wilkinson JE, Wisloff H, Hoydal MA, Rolim N, Abadir PM, et al. Intrinsic aerobic capacity sets a divide for aging and longevity. *Circ Res*. 2011; 109: 1162–1172. DOI: 10.1161/CIRCRESAHA.111.253807 [PubMed: 21921265]

1044. Battilana F, Steurer S, Rizzi G, Delgado AC, Tan KR, Handschin C. Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons. *Aging Cell*. 2020; 19: e13274 doi: 10.1111/ace.13274 [PubMed: 33174325]

1045. Fuller KNZ, Thyfault JP. Barriers in translating preclinical rodent exercise metabolism findings to human health. *J Appl Physiol* (1985). 2021; 130: 182–192. DOI: 10.1152/japplphysiol.00683.2020 [PubMed: 33180643]

1046. Chen Z, Raj A, Prateek GV, Di Francesco A, Liu J, Keyes BE, Kolumam G, Jovic V, Freund A. Automated, high-dimensional evaluation of physiological aging and resilience in outbred mice. *Elife*. 2022; 11 doi: 10.7554/elife.72664 [PubMed: 35404230]

1047. Dennison EM, Laskou F, Westbury LD, Bevilacqua G, Fuggle NR, Iida T, Horii C, Tanaka S, Yoshimura N, Cooper C. Do lifestyle, anthropometric and demographic factors associated with muscle strength differ in a UK and Japanese cohort? An exploratory analysis. *Aging Clin Exp Res*. 2023; 35: 3097–3104. DOI: 10.1007/s40520-023-02614-5 [PubMed: 37948010]

1048. Rantanen T, Masaki K, He Q, Ross GW, Willcox BJ, White L. Midlife muscle strength and human longevity up to age 100 years: a 44-year prospective study among a decedent cohort. *Age (Dordr)*. 2012; 34: 563–570. DOI: 10.1007/s11357-011-9256-y [PubMed: 21541735]

1049. Onerup A, Mehlig K, Geijerstam AA, Ekblom-Bak E, Kuhn HG, Lissner L, Aberg M, Borjesson M. Associations between cardiorespiratory fitness in youth and the incidence of site-specific cancer in men: a cohort study with register linkage. *Br J Sports Med*. 2023; 57: 1248–1256. DOI: 10.1136/bjsports-2022-106617 [PubMed: 37582636]

1050. Teraz K, Kalc M, Simunic B, Marusic U, Pori P, Pisot S, Pisot R. Participation in youth sports influences sarcopenia parameters in older adults. *PeerJ*. 2023; 11 e16432 doi: 10.7717/peerj.16432 [PubMed: 37965287]

1051. Lesinski M, Herz M, Schmelcher A, Granacher U. Effects of Resistance Training on Physical Fitness in Healthy Children and Adolescents: An Umbrella Review. *Sports Med*. 2020; 50: 1901–1928. DOI: 10.1007/s40279-020-01327-3 [PubMed: 32757164]

1052. Hetherington-Rauth M, Magalhaes JP, Alcazar J, Rosa GB, Correia IR, Ara I, Sardinha LB. Relative Sit-to-Stand Muscle Power Predicts an Older Adult's Physical Independence at Age of 90 Yrs Beyond That of Relative Handgrip Strength, Physical Activity, and Sedentary Time: A Cross-sectional Analysis. *Am J Phys Med Rehabil*. 2022; 101: 995–1000. [PubMed: 35034060]

1053. Manning KM, Hall KS, Sloane R, Magistro D, Rabaglietti E, Lee CC, Castle S, Kopp T, Giffuni J, Katzel L, McDonald M, et al. Longitudinal analysis of physical function in older adults: The effects of physical inactivity and exercise training. *Aging Cell*. 2024; 23 e13987 doi: 10.1111/acel.13987 [PubMed: 37681737]

1054. Tiedemann A, Sherrington C, Lord SR. Physiological and psychological predictors of walking speed in older community-dwelling people. *Gerontology*. 2005; 51: 390–395. [PubMed: 16299420]

1055. Marzuca-Nassr GN, Alegria-Molina A, SanMartin-Calisto Y, Artigas-Arias M, Huard N, Sapunar J, Salazar LA, Verdijk LB, van Loon LJC. Muscle Mass and Strength Gains Following Resistance Exercise Training in Older Adults 65–75 Years and Older Adults Above 85 Years. *Int J Sport Nutr Exerc Metab*. 2024; 34: 11–19. [PubMed: 37875254]

1056. Mende E, Moeinnia N, Schaller N, Weiss M, Haller B, Halle M, Siegrist M. Progressive machine-based resistance training for prevention and treatment of sarcopenia in the oldest old: A systematic review and meta-analysis. *Exp Gerontol*. 2022; 163 111767 [PubMed: 35318104]

1057. Carrick-Ranson G, Howden EJ, Levine BD. Exercise in Octogenarians: How Much Is Too Little?. *Annu Rev Med*. 2022; 73: 377–391. [PubMed: 34794323]

1058. Fisher J, Steele J, McKinnon P, McKinnon S. Strength Gains as a Result of Brief, Infrequent Resistance Exercise in Older Adults. *J Sports Med (Hindawi Publ Corp)*. 2014; 2014 731890 doi: 10.1155/2014/731890 [PubMed: 26464894]

1059. The Lancet Healthy L. Physical activity knows no age limit. *Lancet Healthy Longev*. 2024; 5 e447 [PubMed: 38945124]

1060. McKendry J, Breen L, Shad BJ, Greig CA. Muscle morphology and performance in master athletes: A systematic review and meta-analyses. *Ageing Res Rev*. 2018; 45: 62–82. [PubMed: 29715523]

1061. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. *JAMA*. 1990; 263: 3029–3034. [PubMed: 2342214]

1062. de Santana DA, Scolfaro PG, Marzetti E, Cavaglieri CR. Lower extremity muscle hypertrophy in response to resistance training in older adults: Systematic review, meta-analysis, and meta-regression of randomized controlled trials. *Exp Gerontol*. 2024; 198 112639 [PubMed: 39579806]

1063. Fuchs CJ, Trommelen J, Weijzen MEG, Smeets JSJ, van Kranenburg J, Verdijk LB, van Loon LJC. Becoming a World Champion Powerlifter at 71 Years of Age: It Is Never Too Late to Start Exercising. *Int J Sport Nutr Exerc Metab*. 2024; 34: 223–231. [PubMed: 38458181]

1064. Lavisci P, Myers J, Grazzi G. Exceptional exercise capacity in a late bloomer octogenarian triathlete. *J Sports Med Phys Fitness*. 2025; 65: 90–94. [PubMed: 39345103]

1065. Moore SC, Patel AV, Matthews CE, Barrington de Gonzalez A, Park Y, Katki HA, Linet MS, Weiderpass E, Visvanathan K, Helzlsouer KJ, Thun M, et al. Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis. *PLoS Med.* 2012; 9 e1001335 doi: 10.1371/journal.pmed.1001335 [PubMed: 23139642]

1066. Lopez-Bueno R, Yang L, Stamatakis E, Del Pozo Cruz B. Moderate and vigorous leisure time physical activity in older adults and Alzheimer's disease-related mortality in the USA: a dose-response, population-based study. *Lancet Healthy Longev.* 2023; 4: e703–e710. [PubMed: 38042163]

1067. Raj V, Stogios N, Agarwal SM, Cheng AJ. The neuromuscular basis of functional impairment in schizophrenia: A scoping review. *Schizophr Res.* 2024; 274: 46–56. [PubMed: 39260338]

1068. Chen LJ, Hamer M, Lai YJ, Huang BH, Ku PW, Stamatakis E. Can physical activity eliminate the mortality risk associated with poor sleep? A 15-year follow-up of 341,248 MJ Cohort participants. *J Sport Health Sci.* 2022; 11: 596–604. DOI: 10.1016/j.jshs.2021.03.001 [PubMed: 33713846]

1069. Chastin S, McGregor D, Palarea-Albaladejo J, Diaz KM, Hagstromer M, Hallal PC, van Hees VT, Hooker S, Howard VJ, Lee IM, von Rosen P, et al. Joint association between accelerometry-measured daily combination of time spent in physical activity, sedentary behaviour and sleep and all-cause mortality: a pooled analysis of six prospective cohorts using compositional analysis. *Br J Sports Med.* 2021; 55: 1277–1285. DOI: 10.1136/bjsports-2020-102345 [PubMed: 34006506]

1070. Cadore EL, Izquierdo M, Teodoro JL, Martinez-Velilla N, Zambom-Ferraresi F, Moriguchi EH, Saez de Asteasu ML. Effects of short-term multicomponent exercise intervention on muscle power in hospitalized older patients: A secondary analysis of a randomized clinical trial. *J Cachexia Sarcopenia Muscle.* 2023; 14: 2959–2968. DOI: 10.1002/jcsm.13375 [PubMed: 37989600]

1071. Bilberg A, Mannerkorpi K, Borjesson M, Svedlund S, Sivertsson J, Klingberg E, Bjersing J. High-intensity interval training improves cardiovascular and physical health in patients with rheumatoid arthritis: a multicentre randomised controlled trial. *Br J Sports Med.* 2024; 58: 1409–1418. DOI: 10.1136/bjsports-2024-108369 [PubMed: 39179363]

1072. Rossi A, Dikareva A, Bacon SL, Daskalopoulou SS. The impact of physical activity on mortality in patients with high blood pressure: a systematic review. *J Hypertens.* 2012; 30: 1277–1288. [PubMed: 22573122]

1073. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. *Hypertension.* 2005; 46: 667–675. [PubMed: 16157788]

1074. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. *J Am Heart Assoc.* 2013; 2 e004473 doi: 10.1161/JAHA.112.004473 [PubMed: 23525435]

1075. La Gerche A. Proof that exercise works, now it's time for optimizing delivery to our patients with pulmonary hypertension. *Eur Heart J.* 2021; 42: 2296–2298. [PubMed: 33313848]

1076. Grunig E, MacKenzie A, Peacock AJ, Eichstaedt CA, Benjamin N, Nechwatal R, Ulrich S, Saxon S, Bussotti M, Sommaruga M, Ghio S, et al. Standardized exercise training is feasible, safe, and effective in pulmonary arterial and chronic thromboembolic pulmonary hypertension: results from a large European multicentre randomized controlled trial. *Eur Heart J.* 2021; 42: 2284–2295. [PubMed: 33232470]

1077. Mourtzakis M, Heckman GA, McKelvie RS. Aging with Heart Failure: Muscle Matters. *Can J Cardiol.* 2024; 40: 2552–2554. [PubMed: 39374777]

1078. Jansen J, Marshall PW, Benatar JR, Cross R, Lindbom TK, Kingsley M. Low-Intensity Resistance Exercise in Cardiac Rehabilitation: A Narrative Review of Mechanistic Evidence and Clinical Implications. *J Clin Med.* 2024; 13 doi: 10.3390/jcm13237338 [PubMed: 39685797]

1079. Watz H, Pitta F, Rochester CL, Garcia-Aymerich J, ZuWallack R, Troosters T, Vaes AW, Puhan MA, Juhn M, Polkey MI, Vogiatzis I, et al. An official European Respiratory Society statement on physical activity in COPD. *Eur Respir J.* 2014; 44: 1521–1537. [PubMed: 25359358]

1080. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, Hill K, Holland AE, Lareau SC, Man WD, Pitta F, et al. An official American Thoracic Society/European Respiratory Society

statement: key concepts and advances in pulmonary rehabilitation. *Am J Respir Crit Care Med.* 2013; 188: e13–64. [PubMed: 24127811]

1081. Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Anto JM. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population based cohort study. *Thorax.* 2006; 61: 772–778. DOI: 10.1136/thx.2006.060145 [PubMed: 16738033]

1082. Dai J, Dai W, Li WQ. Association of Muscle-Strengthening and Aerobic Physical Activity With All-Cause, Cardiovascular Disease, and Cancer Mortality in U.S. Adults With Diabetes. *Eur J Prev Cardiol.* 2025. [PubMed: 39913676]

1083. Qian C, Zhou F, Lu D, Huang J, Sun M. Exercise intensity and mortality in overweight and obese patients with chronic kidney disease: longitudinal analysis (1999–2016). *BMC Public Health.* 2024; 24: 3020 doi: 10.1186/s12889-024-20498-6 [PubMed: 39482632]

1084. Zhang F, Wang H, Bai Y, Huang L, Zhong Y, Li Y. Gait Speed and All-Cause Mortality in Whole-Spectrum Chronic Kidney Disease: A Systematic Review and Meta-Analysis Included 6217 Participants. *J Cachexia Sarcopenia Muscle.* 2025; 16: e13739 doi: 10.1002/jcsm.13739 [PubMed: 39991779]

1085. Tian S, Liang Z, Qui F, Yu Y, Wang C, Zhang M, Wang X. Optimal exercise modality and dose to improve depressive symptoms in adults with major depressive disorder: A systematic review and Bayesian model-based network meta-analysis of RCTs. *J Psychiatr Res.* 2024; 176: 384–392. [PubMed: 38944017]

1086. O’Neil A, Perez J, Young LM, John T, Turner M, Saunders D, Mahoney S, Bryan M, Ashtree DN, Jacka FN, Bruscella C, et al. Clinical and cost-effectiveness of remote-delivered, online lifestyle therapy versus psychotherapy for reducing depression: results from the CALM non-inferiority, randomised trial. *Lancet Reg Health West Pac.* 2024; 49: 101142 doi: 10.1016/j.lanwpc.2024.101142 [PubMed: 39381019]

1087. Veronese N, Ragusa FS, Hajek A, Stubbs B, Smith L, Barbagallo M, Dominguez LJ, Fontana L, Soysal P, Sabico S, Al-Daghri NM. Long-Term Impact of Physical Activity on Mortality in Adults With Multimorbidity: A 12-Year Cohort Longitudinal Study From the Survey on Health, Ageing and Retirement in Europe. *J Cachexia Sarcopenia Muscle.* 2025; 16: e13695 doi: 10.1002/jcsm.13695 [PubMed: 39910930]

1088. Vollestad NK, Mengshoel AM. Post-exertional malaise in daily life and experimental exercise models in patients with myalgic encephalomyelitis/chronic fatigue syndrome. *Front Physiol.* 2023; 14: 1257557 doi: 10.3389/fphys.2023.1257557 [PubMed: 38111900]

1089. Paffenbarger RS, Hyde RT, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. *N Engl J Med.* 1986; 314: 605–613. [PubMed: 3945246]

1090. Paffenbarger RS, Hyde RT, Wing AL, Lee IM, Jung DL, Kampert JB. The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. *N Engl J Med.* 1993; 328: 538–545. [PubMed: 8426621]

1091. Kujala UM, Leskinen T, Rottensteiner M, Aaltonen S, Ala-Korpela M, Waller K, Kaprio J. Physical activity and health: Findings from Finnish monozygotic twin pairs discordant for physical activity. *Scand J Med Sci Sports.* 2022; 32: 1316–1323. DOI: 10.1111/sms.14205 [PubMed: 35770444]

1092. Berntzen B, Jukarainen S, Kataja M, Hakkarainen A, Lundbom J, Lundbom N, Tammelin T, Simonen R, Pöirila P, Rissanen A, Kaprio J, et al. Physical activity, cardiorespiratory fitness, and metabolic outcomes in monozygotic twin pairs discordant for body mass index. *Scand J Med Sci Sports.* 2018; 28: 1048–1055. [PubMed: 28833625]

1093. Bathgate KE, Bagley JR, Jo E, Talmadge RJ, Tobias IS, Brown LE, Coburn JW, Arevalo JA, Segal NL, Galpin AJ. Muscle health and performance in monozygotic twins with 30 years of discordant exercise habits. *Eur J Appl Physiol.* 2018; 118: 2097–2110. [PubMed: 30006671]

1094. Kujala UM, Kaprio J, Sarna S, Koskenvuo M. Relationship of leisure-time physical activity and mortality: the Finnish twin cohort. *JAMA.* 1998; 279: 440–444. [PubMed: 9466636]

1095. Churchward-Venne TA, Tieland M, Verdijk LB, Leenders M, Dirks ML, de Groot LC, van Loon LJ. There Are No Nonresponders to Resistance-Type Exercise Training in Older Men and Women. *J Am Med Dir Assoc.* 2015; 16: 400–411. [PubMed: 25717010]

1096. Atkinson G, Batterham AM. True and false interindividual differences in the physiological response to an intervention. *Exp Physiol.* 2015; 100: 577–588. [PubMed: 25823596]

1097. Renwick JRM, Preobrazenski N, Wu Z, Khansari A, LeBouedec MA, Nuttall JMG, Bancroft KR, Simpson-Stairs N, Swinton PA, Gurd BJ. Standard Deviation of Individual Response for VO(2max) Following Exercise Interventions: A Systematic Review and Meta-analysis. *Sports Med.* 2024; 54: 3069–3080. [PubMed: 39160296]

1098. Steele J, Fisher JP, Smith D, Schoenfeld BJ, Yang Y, Nakagawa S. Meta-analysis of variation in sport and exercise science: Examples of application within resistance training research. *J Sports Sci.* 2023; 41: 1617–1634. [PubMed: 38037792]

1099. Ross R, de Lannoy L, Stotz PJ. Separate Effects of Intensity and Amount of Exercise on Interindividual Cardiorespiratory Fitness Response. *Mayo Clin Proc.* 2015; 90: 1506–1514. [PubMed: 26455890]

1100. Austad SN, Bartke A. Sex Differences in Longevity and in Responses to Anti-Aging Interventions: A Mini-Review. *Gerontology.* 2015; 62: 40–46. [PubMed: 25968226]

1101. Kane AE, Howlett SE. Sex differences in frailty: Comparisons between humans and preclinical models. *Mech Ageing Dev.* 2021; 198 111546 [PubMed: 34324923]

1102. Zeidan RS, McElroy T, Rathor L, Martenson MS, Lin Y, Mankowski RT. Sex differences in frailty among older adults. *Exp Gerontol.* 2023; 184 112333 [PubMed: 37993077]

1103. Gordon EH, Peel NM, Samanta M, Theou O, Howlett SE, Hubbard RE. Sex differences in frailty: A systematic review and meta-analysis. *Exp Gerontol.* 2017; 89: 30–40. [PubMed: 28043934]

1104. O’Caoimh R, Sezgin D, O’Donovan MR, Molloy DW, Clegg A, Rockwood K, Liew A. Prevalence of frailty in 62 countries across the world: a systematic review and meta-analysis of population-level studies. *Age Ageing.* 2021; 50: 96–104. [PubMed: 33068107]

1105. Hubbard RE, Rockwood K. Frailty in older women. *Maturitas.* 2011; 69: 203–207. [PubMed: 21570783]

1106. Park C, Ko FC. The Science of Frailty: Sex Differences. *Clin Geriatr Med.* 2021; 37: 625–638. DOI: 10.1016/j.cger.2021.05.008 [PubMed: 34600727]

1107. Gordon EH, Hubbard RE. Do sex differences in chronic disease underpin the sex-frailty paradox?. *Mech Ageing Dev.* 2019; 179: 44–50. [PubMed: 30825457]

1108. Hunter SK, Senefeld JW. Sex differences in human performance. *J Physiol.* 2024; 602: 4129–4156. [PubMed: 39106346]

1109. Burns SD, Ailshire JA, Crimmins EM. Functional limitation among middle age and older adults: Exploring cross-national gender disparities. *Arch Gerontol Geriatr.* 2024; 123 105410 doi: 10.1016/j.archger.2024.105410 [PubMed: 38503129]

1110. Atance D, Claramunt MM, Varea X, Aburto JM. Convergence and divergence in mortality: A global study from 1990 to 2030. *PLoS One.* 2024; 19 e0295842 doi: 10.1371/journal.pone.0295842 [PubMed: 38232060]

1111. Carmel S. Health and Well-Being in Late Life: Gender Differences Worldwide. *Front Med (Lausanne).* 2019; 6: 218. doi: 10.3389/fmed.2019.00218 [PubMed: 31649931]

1112. Ji H, Gulati M, Huang TY, Kwan AC, Ouyang D, Ebinger JE, Casaletto K, Moreau KL, Skali H, Cheng S. Sex Differences in Association of Physical Activity With All-Cause and Cardiovascular Mortality. *J Am Coll Cardiol.* 2024; 83: 783–793. DOI: 10.1016/j.jacc.2023.12.019 [PubMed: 38383092]

1113. Puett D. Biology of Aging: Identified Drivers and Interventions for Optimal Healthspan. *Acsm Health Fit J.* 2018; 22: 17–27.

1114. Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N, Alfaro-Almagro F, Bell JD, Boultwood C, Collins R, Conroy MC, Crabtree N, et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. *Nat Commun.* 2020; 11 2624 doi: 10.1038/s41467-020-15948-9 [PubMed: 32457287]

1115. Bamberg F, Kauczor HU, Weckbach S, Schlett CL, Forsting M, Ladd SC, Greiser KH, Weber MA, Schulz-Menger J, Niendorf T, Pischon T, et al. Whole-Body MR Imaging in the German National Cohort: Rationale, Design, and Technical Background. *Radiology.* 2015; 277: 206–220. [PubMed: 25989618]

1116. Lavie CJ, Arena R, Kaminsky LA. Making the Case to Measure and Improve Cardiorespiratory Fitness in Routine Clinical Practice. *Mayo Clin Proc.* 2022; 97: 1038–1040. [PubMed: 35570068]

1117. Kaminsky LA, Imboden MT, Ozemek C. It's Time to (Again) Recognize the Considerable Clinical and Public Health Significance of Cardiorespiratory Fitness. *J Am Coll Cardiol.* 2023; 81: 1148–1150. [PubMed: 36948730]

1118. Ross R, Arena R, Myers J, Kokkinos P, Kaminsky LA. Update to the 2016 American Heart Association cardiorespiratory fitness statement. *Prog Cardiovasc Dis.* 2024; 83: 10–15. [PubMed: 38387825]

1119. Kaminsky LA, Arena R, Myers J, Peterman JE, Bonikowske AR, Harber MP, Medina Inojosa JR, Lavie CJ, Squires RW. Updated Reference Standards for Cardiorespiratory Fitness Measured with Cardiopulmonary Exercise Testing: Data from the Fitness Registry and the Importance of Exercise National Database (FRIEND). *Mayo Clin Proc.* 2022; 97: 285–293. [PubMed: 34809986]

1120. Peterman JE, Arena R, Myers J, Marzolini S, Ross R, Lavie CJ, Wisloff U, Stensvold D, Kaminsky LA. Development of Global Reference Standards for Directly Measured Cardiorespiratory Fitness: A Report From the Fitness Registry and Importance of Exercise National Database (FRIEND). *Mayo Clin Proc.* 2020; 95: 255–264. [PubMed: 31883698]

1121. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, Haskell WL, Kaminsky LA, Levine BD, Lavie CJ, Myers J, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. *Circulation.* 2016; 134: e653–e699. [PubMed: 27881567]

1122. Guazzi M, Arena R, Halle M, Piepoli MF, Myers J, Lavie CJ. 2016 Focused Update: Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. *Circulation.* 2016; 133: e694–711. [PubMed: 27143685]

1123. Guazzi M, Arena R, Halle M, Piepoli MF, Myers J, Lavie CJ. 2016 focused update: clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. *Eur Heart J.* 2018; 39: 1144–1161. [PubMed: 27141094]

1124. Price OJ, Tsakirides C, Gray M, Stavropoulos-Kalinoglou A. ACSM Preparticipation Health Screening Guidelines: A UK University Cohort Perspective. *Med Sci Sports Exerc.* 2019; 51: 1047–1054. [PubMed: 30985585]

1125. Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. *Phys Ther.* 2000; 80: 782–807. [PubMed: 10911416]

1126. Lobelo F, Young Rohm, Sallis R, Garber MD, Billinger SA, Duperly J, Hutber A, Pate RR, Thomas RJ, Widlansky ME, McConnell MV, et al. Routine Assessment and Promotion of Physical Activity in Healthcare Settings: A Scientific Statement From the American Heart Association. *Circulation.* 2018; 137: e495–e522. [PubMed: 29618598]

1127. Maron BJ, Levine BD, Washington RL, Baggish AL, Kovacs RJ, Maron MS, American Heart Association E, Arrhythmias Committee of Council on Clinical Cardiology CoCDiYCoC, Stroke Nursing CoFG, Translational B, and American College of C. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 2: Preparticipation Screening for Cardiovascular Disease in Competitive Athletes: A Scientific Statement From the American Heart Association and American College of Cardiology. *Circulation.* 2015; 132: e267–272. [PubMed: 26527714]

1128. Wolf C, Blackwell TL, Johnson E, Glynn NW, Nicklas B, Kritchevsky SB, Carnero EA, Cawthon PM, Cummings SR, Toledo FGS, Newman AB, et al. Cardiopulmonary Exercise Testing in a Prospective Multicenter Cohort of Older Adults. *Med Sci Sports Exerc.* 2024; 56: 1574–1584. DOI: 10.1249/MSS.0000000000003444 [PubMed: 38598351]

1129. Albouaini K, Egred M, Alahmar A, Wright DJ. Cardiopulmonary exercise testing and its application. *Postgraduate Medical Journal.* 2007; 83: 675–682. DOI: 10.1136/ht.2007.121558 [PubMed: 17989266]

1130. Ekblom-Bak E, Bjorkman F, Hellenius ML, Ekblom B. A new submaximal cycle ergometer test for prediction of VO₂max. *Scand J Med Sci Sports.* 2014; 24: 319–326. [PubMed: 23126417]

1131. Lee DC, Lavie CJ, Sui X, Blair SN. Running and Mortality: Is More Actually Worse?. *Mayo Clin Proc.* 2016; 91: 534–536. [PubMed: 27046526]

1132. Mozaffarian D, Furberg CD, Psaty BM, Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the cardiovascular health study. *Circulation*. 2008; 118: 800–807. DOI: 10.1161/CIRCULATIONAHA.108.785626 [PubMed: 18678768]

1133. Abdulla J, Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. *Europace*. 2009; 11: 1156–1159. [PubMed: 19633305]

1134. Qureshi WT, Alirhayim Z, Blaha MJ, Juraschek SP, Keteyian SJ, Brawner CA, Al-Mallah MH. Cardiorespiratory Fitness and Risk of Incident Atrial Fibrillation: Results From the Henry Ford Exercise Testing (FIT) Project. *Circulation*. 2015; 131: 1827–1834. [PubMed: 25904645]

1135. Faselis C, Kokkinos P, Tsimploulis A, Pittaras A, Myers J, Lavie CJ, Kyritsi F, Lovic D, Karasik P, Moore H. Exercise Capacity and Atrial Fibrillation Risk in Veterans: A Cohort Study. *Mayo Clin Proc*. 2016; 91: 558–566. [PubMed: 27068670]

1136. Arem H, Moore SC, Patel A, Hartge P, Berrington de Gonzalez A, Visvanathan K, Campbell PT, Freedman M, Weiderpass E, Adami HO, Linet MS, et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. *JAMA Intern Med*. 2015; 175: 959–967. DOI: 10.1001/jamainternmed.2015.0533 [PubMed: 25844730]

1137. Schnohr P, O'Keefe JH, Lavie CJ, Holtermann A, Lange P, Jensen GB, Marott JL. U-Shaped Association Between Duration of Sports Activities and Mortality: Copenhagen City Heart Study. *Mayo Clin Proc*. 2021; 96: 3012–3020. [PubMed: 34412854]

1138. Schnohr P, O'Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long-term mortality: the Copenhagen City Heart Study. *J Am Coll Cardiol*. 2015; 65: 411–419. [PubMed: 25660917]

1139. De Bosscher R, Dausin C, Claus P, Bogaert J, Dymarkowski S, Goetschalckx K, Ghekiere O, Belmans A, Van De Heyning CM, Van Herck P, Paelinck B, et al. Endurance exercise and the risk of cardiovascular pathology in men: a comparison between lifelong and late-onset endurance training and a non-athletic lifestyle - rationale and design of the Master@Heart study, a prospective cohort trial. *BMJ Open Sport Exerc Med*. 2021; 7 e001048 doi: 10.1136/bmjsem-2021-001048 [PubMed: 33927885]

1140. Sung KC, Hong YS, Lee JY, Lee SJ, Chang Y, Ryu S, Zhao D, Cho J, Guallar E, Lima JAC. Physical activity and the progression of coronary artery calcification. *Heart*. 2021; 107: 1710–1716. [PubMed: 34544807]

1141. Zambrano A, Tintut Y, Demer LL, Hsu JJ. Potential mechanisms linking high-volume exercise with coronary artery calcification. *Heart*. 2023; 109: 1139–1145. DOI: 10.1136/heartjnl-2022-321986 [PubMed: 36702539]

1142. Pavlovic A, DeFina LF, Leonard D, Radford NB, Farrell SW, Barlow CE, Shuval K, Berry JD, Levine BD. Coronary artery calcification and high-volume physical activity: role of lower intensity vs. longer duration of exercise. *Eur J Prev Cardiol*. 2024; 31: 1526–1534. [PubMed: 38651686]

1143. Shuval K, Leonard D, DeFina LF, Barlow CE, Berry JD, Turlington WM, Pavlovic A, Radford NB, Gabriel KP, Khera A, Levine BD. Physical Activity and Progression of Coronary Artery Calcification in Men and Women. *JAMA Cardiol*. 2024; 9: 659–666. DOI: 10.1001/jamacardio.2024.0759 [PubMed: 38748444]

1144. Papatheodorou E, Aengevaeren VL, Eijsvogels TMH, AlFakih K, Hughes RK, Merghani A, Kissel CK, Fyyaz S, Bakalakos A, Wilson MG, Dey D, et al. Prevalence of Coronary Atherosclerosis in Female Masters Endurance Athletes. *Circulation*. 2024; 150: 1478–1480. [PubMed: 39466884]

1145. Radford NB, DeFina LF, Leonard D, Barlow CE, Willis BL, Gibbons LW, Gilchrist SC, Khera A, Levine BD. Cardiorespiratory Fitness, Coronary Artery Calcium, and Cardiovascular Disease Events in a Cohort of Generally Healthy Middle-Age Men: Results From the Cooper Center Longitudinal Study. *Circulation*. 2018; 137: 1888–1895. [PubMed: 29343464]

1146. Tikkanen E, Gustafsson S, Ingelsson E. Associations of Fitness, Physical Activity, Strength, and Genetic Risk With Cardiovascular Disease: Longitudinal Analyses in the UK Biobank Study. *Circulation*. 2018; 137: 2583–2591. DOI: 10.1161/CIRCULATIONAHA.117.032432 [PubMed: 29632216]

1147. Feldman DI, Al-Mallah MH, Keteyian SJ, Brawner CA, Feldman T, Blumenthal RS, Blaha MJ. No evidence of an upper threshold for mortality benefit at high levels of cardiorespiratory fitness. *J Am Coll Cardiol.* 2015; 65: 629–630. [PubMed: 25677322]

1148. Jae SY, Kurl S, Kim HJ, Franklin BA, Kunutsor SK, Kang M, Laukkanen JA. Is There an “Asymptote of Gain” Beyond Which Further Increases in Cardiorespiratory Fitness Convey No Additional Benefits on Mortality and Atrial Fibrillation?. *Mayo Clin Proc.* 2019; 94: 545–547. [PubMed: 30832795]

1149. Yates T, Razieh C, Henson J, Rowlands AV, Goldney J, Gulsin GS, Davies MJ, Khunti K, Zaccardi F, McCann GP. Device-measured physical activity and cardiac structure by magnetic resonance. *Eur Heart J.* 2025; 46: 176–186. DOI: 10.1093/eurheartj/ehae506 [PubMed: 39140328]

1150. Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. *J Am Coll Cardiol.* 2014; 64: 472–481. DOI: 10.1016/j.jacc.2014.04.058 [PubMed: 25082581]

1151. Lazarus NR, Harridge SDR. Declining performance of master athletes: silhouettes of the trajectory of healthy human ageing?. *J Physiol.* 2017; 595: 2941–2948. DOI: 10.1113/JP272443 [PubMed: 27808406]

1152. Pedisic Z, Shrestha N, Kovalchik S, Stamatakis E, Liangruenrom N, Grgic J, Titze S, Biddle SJ, Bauman AE, Oja P. Is running associated with a lower risk of all-cause, cardiovascular and cancer mortality, and is the more the better? A systematic review and meta-analysis. *Br J Sports Med.* 2020; 54: 898–905. [PubMed: 31685526]

1153. Lee DH, Rezende LFM, Joh HK, Keum N, Ferrari G, Rey-Lopez JP, Rimm EB, Tabung FK, Giovannucci EL. Long-Term Leisure-Time Physical Activity Intensity and All-Cause and Cause-Specific Mortality: A Prospective Cohort of US Adults. *Circulation.* 2022; 146: 523–534. DOI: 10.1161/CIRCULATIONAHA.121.058162 [PubMed: 35876019]

1154. Eijsvogels TM, Molossi S, Lee DC, Emery MS, Thompson PD. Exercise at the Extremes: The Amount of Exercise to Reduce Cardiovascular Events. *J Am Coll Cardiol.* 2016; 67: 316–329. [PubMed: 26796398]

1155. Levine BD, Baggish AL, Kovacs RJ, Link MS, Maron MS, Mitchell JH, American Heart Association E, Arrhythmias Committee of Council on Clinical Cardiology CoCDiYCoC, Stroke Nursing CoFG, Translational B, and American College of C. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 1: Classification of Sports: Dynamic, Static, and Impact: A Scientific Statement From the American Heart Association and American College of Cardiology. *Circulation.* 2015; 132: e262–266. [PubMed: 26621643]

1156. Foulkes S, Hewitt D, Skow R, Dover D, Kaul P, La Gerche A, Haykowsky M. outrunning the grim reaper: longevity of the first 200 sub-4 min mile male runners. *Br J Sports Med.* 2024; 58: 717–721. [PubMed: 38729629]

1157. Runacres A, Mackintosh KA, McNarry MA. Health Consequences of an Elite Sporting Career: Long-Term Detriment or Long-Term Gain? A Meta-Analysis of 165,000 Former Athletes. *Sports Med.* 2021; 51: 289–301. DOI: 10.1007/s40279-020-01379-5 [PubMed: 33368029]

1158. Lemez S, Baker J. Do Elite Athletes Live Longer? A Systematic Review of Mortality and Longevity in Elite Athletes. *Sports Med Open.* 2015; 1: 16. doi: 10.1186/s40798-015-0024-x [PubMed: 26301178]

1159. Garatachea N, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Emanuele E, Lucia A. Elite athletes live longer than the general population: a meta-analysis. *Mayo Clin Proc.* 2014; 89: 1195–1200. [PubMed: 25128074]

1160. Antero J, Tanaka H, De Laroche Lambert Q, Pohar-Perme M, Toussaint JF. Female and male US Olympic athletes live 5 years longer than their general population counterparts: a study of 8124 former US Olympians. *Br J Sports Med.* 2021; 55: 206–212. [PubMed: 32727712]

1161. Antero-Jacquemin J, Pohar-Perme M, Rey G, Toussaint JF, Latouche A. The heart of the matter: years-saved from cardiovascular and cancer deaths in an elite athlete cohort with over a century of follow-up. *Eur J Epidemiol.* 2018; 33: 531–543. [PubMed: 29730745]

1162. Lin Y, Gajewski A, Poznanska A. Examining mortality risk and rate of ageing among Polish Olympic athletes: a survival follow-up from 1924 to 2012. *BMJ Open*. 2016; 6 e010965 doi: 10.1136/bmjjopen-2015-010965 [PubMed: 27091824]

1163. Marijon E, Tafflet M, Antero-Jacquemin J, El Helou N, Berthelot G, Celermajer DS, Bougouin W, Combes N, Hermine O, Empana JP, Rey G, et al. Mortality of French participants in the Tour de France (1947-2012). *Eur Heart J*. 2013; 34: 3145–3150. [PubMed: 24001718]

1164. Kontro TK, Sarna S, Kaprio J, Kujala UM. Mortality and health-related habits in 900 Finnish former elite athletes and their brothers. *Br J Sports Med*. 2018; 52: 89–95. [PubMed: 29127265]

1165. Kettunen JA, Kujala UM, Kaprio J, Backman H, Peltonen M, Eriksson JG, Sarna S. All-cause and disease-specific mortality among male, former elite athletes: an average 50-year follow-up. *Br J Sports Med*. 2015; 49: 893–897. [PubMed: 25183628]

1166. Clarke PM, Walter SJ, Hayen A, Mallon WJ, Heijmans J, Studdert DM. Survival of the fittest: retrospective cohort study of the longevity of Olympic medallists in the modern era. *BMJ*. 2012; 345 e8308 [PubMed: 23241272]

1167. Sanchis-Gomar F, Olaso-Gonzalez G, Corella D, Gomez-Cabrera MC, Vina J. Increased average longevity among the “Tour de France” cyclists. *Int J Sports Med*. 2011; 32: 644–647. [PubMed: 21618162]

1168. Sarna S, Sahi T, Koskenvuo M, Kaprio J. Increased life expectancy of world class male athletes. *Med Sci Sports Exerc*. 1993; 25: 237–244. [PubMed: 8450727]

1169. Teramoto M, Bungum TJ. Mortality and longevity of elite athletes. *J Sci Med Sport*. 2010; 13: 410–416. [PubMed: 19574095]

1170. Antero-Jacquemin J, Rey G, Marc A, Dor F, Haida A, Marck A, Berthelot G, Calmat A, Latouche A, Toussaint JF. Mortality in female and male French Olympians: a 1948–2013 cohort study. *Am J Sports Med*. 2015; 43: 1505–1512. [PubMed: 25813868]

1171. Clarke PM, Walter SJ, Hayen A, Mallon WJ, Heijmans J, Studdert DM. Survival of the fittest: retrospective cohort study of the longevity of Olympic medallists in the modern era. *Br J Sports Med*. 2015; 49: 898–902. [PubMed: 26084528]

1172. Booth FW, Roberts CK. Linking performance and chronic disease risk: indices of physical performance are surrogates for health. *Br J Sports Med*. 2008; 42: 950–952. [PubMed: 18838401]

1173. Gries KJ, Trappe SW. The Aging Athlete: Paradigm of Healthy Aging. *Int J Sports Med*. 2022; 43: 661–678. [PubMed: 35122228]

1174. Radak Z, Aczel D, Fejes I, Mozaffaritabar S, Pavlik G, Komka Z, Balogh L, Babszki Z, Babszki G, Kolai E, McGreevy KM, et al. Slowed epigenetic aging in Olympic champions compared to non-champions. *Geroscience*. 2024; doi: 10.1007/s11357-024-01440-5 [PubMed: 39601999]

1175. Kujala UM, Marti P, Kaprio J, Hernelahti M, Tikkanen H, Sarna S. Occurrence of chronic disease in former top-level athletes. Predominance of benefits, risks or selection effects?. *Sports Med*. 2003; 33: 553–561. [PubMed: 12797837]

1176. Kujala UM. Is physical activity a cause of longevity? It is not as straightforward as some would believe. A critical analysis. *Br J Sports Med*. 2018; 52: 914–918. [PubMed: 29545237]

1177. Bakker EA, Aengevaeren VL, Lee DC, Thompson PD, Eijsvogels TMH. All-cause mortality risks among participants in mass-participation sporting events. *Br J Sports Med*. 2024; 58: 421–426. [PubMed: 38316539]

1178. Foulkes SJ, Haykowsky MJ, Kistler PM, McConell GK, Trappe S, Hargreaves M, Costill DL, La Gerche A. Lifelong physiology of a former marathon world-record holder: the pros and cons of extreme cardiac remodeling. *J Appl Physiol (1985)*. 2024; 137: 461–472. DOI: 10.1152/japplphysiol.00070.2024 [PubMed: 38935800]

1179. Kim JH, Malhotra R, Chiampas G, d’Hemecourt P, Troyanos C, Cianca J, Smith RN, Wang TJ, Roberts WO, Thompson PD, Baggish AL, et al. Cardiac arrest during long-distance running races. *N Engl J Med*. 2012; 366: 130–140. [PubMed: 22236223]

1180. Harris KM, Creswell LL, Haas TS, Thomas T, Tung M, Isaacson E, Garberich RF, Maron BJ. Death and Cardiac Arrest in U.S. Triathlon Participants, 1985 to 2016: A Case Series. *Ann Intern Med*. 2017; 167: 529–535. [PubMed: 28975231]

1181. Mannakkara NN, Finocchiaro G. Exercise and the Heart: Benefits, Risks and Adverse Effects of Exercise Training. *Rev Cardiovasc Med*. 2023; 24: 94. doi: 10.31083/j.rcm2403094 [PubMed: 39077491]

1182. Bays-Moneo AB, Izquierdo M, Anton MM, Cadore EL. Cost-Consequences Analysis Following Different Exercise Interventions in Institutionalized Oldest Old: A Pilot Study of a Randomized Clinical Trial. *J Nutr Health Aging*. 2023; 27: 1091–1099. [PubMed: 37997731]

1183. Morris BA, Sinaei R, Smart NA. Resistance is not futile: a systematic review of the benefits, mechanisms and safety of resistance training in people with heart failure. *Heart Fail Rev*. 2024; 29: 827–839. DOI: 10.1007/s10741-024-10402-0 [PubMed: 38619757]

1184. Baral R, Ho JSY, Soroya AN, Hanger M, Clarke RE, Memon SF, Glatzel H, Ahmad M, Providencia R, Bray JJH, D'Ascenzo F. Exercise training improves exercise capacity and quality of life in heart failure with preserved ejection fraction: a systematic review and meta-analysis of randomized controlled trials. *Eur Heart J Open*. 2024; 4 oea033 doi: 10.1093/ehjopen/oea033 [PubMed: 38982996]

1185. Franklin BA, Eijsvogels TMH. A narrative review on exercise and cardiovascular disease: Physical activity thresholds for optimizing health outcomes. *Heart and Mind*. 2023; 7: 34–39.

1186. Lavie CJ, Wisloff U, Blumenthal RS. Extreme Physical Activity and Coronary Artery Calcification-Running Heavily and Safely With “Hearts of Stone”. *JAMA Cardiol*. 2019; 4: 182–183. [PubMed: 30698616]

1187. Eijsvogels TMH, Thompson PD, Franklin BA. The “Extreme Exercise Hypothesis”: Recent Findings and Cardiovascular Health Implications. *Curr Treat Options Cardiovasc Med*. 2018; 20: 84. doi: 10.1007/s11936-018-0674-3 [PubMed: 30155804]

1188. Franklin BA, Thompson PD, Al-Zaiti SS, Albert CM, Hivert MF, Levine BD, Lobelo F, Madan K, Sharrief AZ, Eijsvogels TMH, American Heart Association Physical Activity Committee of the Council on L, Cardiometabolic H, Council on C, Stroke N, Council on Clinical C, and Stroke C. Exercise-Related Acute Cardiovascular Events and Potential deleterious Adaptations Following Long-Term Exercise Training: Placing the Risks Into Perspective-An Update: A Scientific Statement From the American Heart Association. *Circulation*. 2020; 141: e705–e736. [PubMed: 32100573]

1189. Franklin BA, Kaminsky LA, Kokkinos P. Quantitating the Dose of Physical Activity in Secondary Prevention: Relation of Exercise Intensity to Survival. *Mayo Clin Proc*. 2018; 93: 1158–1163. [PubMed: 30193669]

1190. Quindry JC, Franklin BA, Chapman M, Humphrey R, Mathis S. Benefits and Risks of High-Intensity Interval Training in Patients With Coronary Artery Disease. *Am J Cardiol*. 2019; 123: 1370–1377. [PubMed: 30732854]

1191. Wewege MA, Ahn D, Yu J, Liou K, Keech A. High-Intensity Interval Training for Patients With Cardiovascular Disease-Is It Safe? A Systematic Review. *J Am Heart Assoc*. 2018; 7 e009305 doi: 10.1161/JAHA.118.009305 [PubMed: 30376749]

1192. Franklin BA, Billecke S. Putting the benefits and risks of aerobic exercise in perspective. *Curr Sports Med Rep*. 2012; 11: 201–208. [PubMed: 22777331]

1193. Wen CP, Wai JP, Tsai MK, Chen CH. Minimal amount of exercise to prolong life: to walk, to run, or just mix it up?. *J Am Coll Cardiol*. 2014; 64: 482–484. [PubMed: 25082582]

1194. Radaelli R, Rech A, Molinari T, Markarian AM, Petropoulou M, Granacher U, Hortobagyi T, Lopez P. Effects of Resistance Training Volume on Physical Function, Lean Body Mass and Lower-Body Muscle Hypertrophy and Strength in Older Adults: A Systematic Review and Network Meta-analysis of 151 Randomised Trials. *Sports Med*. 2024. [PubMed: 39405023]

1195. Glazer NL, Lyass A, Esliger DW, Bleasdale SJ, Freedson PS, Massaro JM, Murabito JM, Vasan RS. Sustained and shorter bouts of physical activity are related to cardiovascular health. *Med Sci Sports Exerc*. 2013; 45: 109–115. DOI: 10.1249/MSS.0b013e31826beae5 [PubMed: 22895372]

1196. Ross R, Janssen I, Tremblay MS. Public health importance of light intensity physical activity. *J Sport Health Sci*. 2024; 13: 674–675. DOI: 10.1016/j.jshs.2024.01.010 [PubMed: 38307207]

1197. Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, Chan HT, Tsao CK, Tsai SP, Wu X. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. *Lancet*. 2011; 378: 1244–1253. [PubMed: 21846575]

1198. Lee IM, Powell KE, Sarmiento OL, Hallal PC. Even a small dose of physical activity can be good medicine. *Nat Med.* 2025. [PubMed: 39762423]

1199. Hakim AA, Petrovitch H, Burchfiel CM, Ross GW, Rodriguez BL, White LR, Yano K, Curb JD, Abbott RD. Effects of walking on mortality among nonsmoking retired men. *N Engl J Med.* 1998; 338: 94–99. [PubMed: 9420340]

1200. Kelly P, Williamson C, Niven AG, Hunter R, Mutrie N, Richards J. Walking on sunshine: scoping review of the evidence for walking and mental health. *Br J Sports Med.* 2018; 52: 800–806. [PubMed: 29858467]

1201. Murtagh EM, Nichols L, Mohammed MA, Holder R, Nevill AM, Murphy MH. The effect of walking on risk factors for cardiovascular disease: an updated systematic review and meta-analysis of randomised control trials. *Prev Med.* 2015; 72: 34–43. [PubMed: 25579505]

1202. Manson JE, Hu FB, Rich-Edwards JW, Colditz GA, Stampfer MJ, Willett WC, Speizer FE, Hennekens CH. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. *N Engl J Med.* 1999; 341: 650–658. [PubMed: 10460816]

1203. Ahmadi MN, Hamer M, Gill JMR, Murphy M, Sanders JP, Doherty A, Stamatakis E. Brief bouts of device-measured intermittent lifestyle physical activity and its association with major adverse cardiovascular events and mortality in people who do not exercise: a prospective cohort study. *Lancet Public Health.* 2023; 8: e800–e810. [PubMed: 37777289]

1204. Bloch-Ibenfeldt M, Gates Theil, Karlog K, Demnitz N, Kjaer M, Boraxbekk CJ. Heavy resistance training at retirement age induces 4-year lasting beneficial effects in muscle strength: a long-term follow-up of an RCT. *BMJ Open Sport Exerc Med.* 2024; 10 e001899 doi: 10.1136/bmjsem-2024-001899 [PubMed: 38911477]

1205. Jefferis BJ, Parsons TJ, Sartini C, Ash S, Lennon LT, Papacosta O, Morris RW, Wannamethee SG, Lee IM, Whincup PH. Objectively measured physical activity, sedentary behaviour and all-cause mortality in older men: does volume of activity matter more than pattern of accumulation?. *Br J Sports Med.* 2019; 53: 1013–1020. DOI: 10.1136/bjsports-2017-098733 [PubMed: 29440040]

1206. Millard LAC, Tilling K, Gaunt TR, Carslake D, Lawlor DA. Association of physical activity intensity and bout length with mortality: An observational study of 79,503 UK Biobank participants. *PLoS Med.* 2021; 18 e1003757 doi: 10.1371/journal.pmed.1003757 [PubMed: 34525088]

1207. Saint-Maurice PF, Troiano RP, Matthews CE, Kraus WE. Moderate-to-Vigorous Physical Activity and All-Cause Mortality: Do Bouts Matter?. *J Am Heart Assoc.* 2018; 7 doi: 10.1161/JAHA.117.007678 [PubMed: 29567764]

1208. Jakicic JM, Kraus WE, Powell KE, Campbell WW, Janz KF, Troiano RP, Sprow K, Torres A, Piercy KL, Physical Activity Guidelines Advisory C. Association between Bout Duration of Physical Activity and Health: Systematic Review. *Med Sci Sports Exerc.* 2019; 51: 1213–1219. DOI: 10.1249/MSS.0000000000001933 [PubMed: 31095078]

1209. Stensvold D, Viken H, Steinshamn SL, Dalen H, Stoylen A, Loennechen JP, Reitlo LS, Zisko N, Baekkerud FH, Tari AR, Sandbakk SB, et al. Effect of exercise training for five years on all cause mortality in older adults—the Generation 100 study: randomised controlled trial. *BMJ.* 2020; 371 m3485 doi: 10.1136/bmj.m3485 [PubMed: 33028588]

1210. Chen C, Ding S, Wang J. Digital health for aging populations. *Nat Med.* 2023; 29: 1623–1630. [PubMed: 37464029]

1211. Lee IM, Keadle SK, Matthews CE. Fitness Trackers to Guide Advice on Activity Prescription. *JAMA.* 2023; 330: 1733–1734. [PubMed: 37812433]

1212. Ferguson T, Olds T, Curtis R, Blake H, Crozier AJ, Dankiw K, Dumuid D, Kasai D, O'Connor E, Virgara R, Maher C. Effectiveness of wearable activity trackers to increase physical activity and improve health: a systematic review of systematic reviews and meta-analyses. *Lancet Digit Health.* 2022; 4: e615–e626. [PubMed: 35868813]

1213. Keshet A, Reicher L, Bar N, Segal E. Wearable and digital devices to monitor and treat metabolic diseases. *Nat Metab.* 2023; 5: 563–571. [PubMed: 37100995]

1214. Khurshid S, Weng LC, Nauffal V, Pirruccello JP, Venn RA, Al-Alusi MA, Benjamin EJ, Ellinor PT, Lubitz SA. Wearable accelerometer-derived physical activity and incident disease. *NPJ Digit Med.* 2022; 5: 131. doi: 10.1038/s41746-022-00676-9 [PubMed: 36056190]

1215. Slemensek J, Fister I, Gersak J, Bratina B, van Midden VM, Pirtosek Z, Safaric R. Human Gait Activity Recognition Machine Learning Methods. *Sensors (Basel)*. 2023; 23 doi: 10.3390/s23020745 [PubMed: 36679546]

1216. Yu S, Chen Z, Wu X. The Impact of Wearable Devices on Physical Activity for Chronic Disease Patients: Findings from the 2019 Health Information National Trends Survey. *Int J Environ Res Public Health*. 2023; 20 doi: 10.3390/ijerph20010887 [PubMed: 36613207]

1217. Girolami M, Mavilia F, Delmastro F. Sensing social interactions through BLE beacons and commercial mobile devices. *Pervasive Mob Comput.* 2020; 67 101198 doi: 10.1016/j.pmcj.2020.101198 [PubMed: 32834802]

1218. Shei RJ, Holder IG, Oumsang AS, Paris BA, Paris HL. Wearable activity trackers-advanced technology or advanced marketing?. *Eur J Appl Physiol.* 2022; 122: 1975–1990. DOI: 10.1007/s00421-022-04951-1 [PubMed: 35445837]

1219. Seneviratne MG, Connolly SB, Martin SS, Parakh K. Grains of Sand to Clinical Pearls: Realizing the Potential of Wearable Data. *Am J Med.* 2023; 136: 136–142. [PubMed: 36351523]

1220. Lima FV, Kadiyala V, Huang A, Agusala K, Cho D, Freeman AM, Druz R. At the Crossroads! Time to Start Taking Smartwatches Seriously. *Am J Cardiol.* 2022; 179: 96–101. [PubMed: 35842279]

1221. Kang HS, Exworthy M. Wearing the Future-Wearables to Empower Users to Take Greater Responsibility for Their Health and Care: Scoping Review. *JMIR Mhealth Uhealth*. 2022; 10 e35684 doi: 10.2196/35684 [PubMed: 35830222]

1222. Santana A, Mediano M, Kasal D. Physical performance tests and in-hospital outcomes in elective open chest heart surgery. *Int J Cardiol Heart Vasc.* 2023; 44 101164 doi: 10.1016/j.ijcha.2022.101164 [PubMed: 36578300]

1223. Staes M, Gyselinck I, Goetschalckx K, Troosters T, Janssens W. Identifying limitations to exercise with incremental cardiopulmonary exercise testing: a scoping review. *Eur Respir Rev.* 2024; 33 doi: 10.1183/16000617.0010-2024 [PubMed: 39231595]

1224. Brawner CA, Ehrman JK, Keteyian SJ. Are International Standards for Exercise Capacity Ready for Prime Time?. *Mayo Clin Proc.* 2020; 95: 218–220. [PubMed: 32029079]

1225. Andonian BJ, Hardy N, Bendelac A, Polys N, Kraus WE. Making Cardiopulmonary Exercise Testing Interpretable for Clinicians. *Curr Sports Med Rep.* 2021; 20: 545–552. DOI: 10.1249/JSR.0000000000000895 [PubMed: 34622820]

1226. Sidhu SS, Saggar K, Goyal O, Kishore H, Sidhu SS. Normative values of skeletal muscle mass, strength and performance in the Indian population. *Indian J Gastroenterol.* 2024; 43: 628–637. [PubMed: 38758434]

1227. Roman-Liu D, Kaminska J, Tokarski TM. Population-specific equations of age-related maximum handgrip force: a comprehensive review. *PeerJ.* 2024; 12 e17703 doi: 10.7717/peerj.17703 [PubMed: 39056055]

1228. Swift DL, Johannsen NM, Earnest CP, Newton RL Jr, McGee JE, Church TS. Cardiorespiratory Fitness and Exercise Training in African Americans. *Prog Cardiovasc Dis.* 2017; 60: 96–102. [PubMed: 28606473]

1229. Swift DL, Staiano AE, Johannsen NM, Lavie CJ, Earnest CP, Katzmarzyk PT, Blair SN, Newton RL Jr, Church TS. Low cardiorespiratory fitness in African Americans: a health disparity risk factor?. *Sports Med.* 2013; 43: 1301–1313. DOI: 10.1007/s40279-013-0092-3 [PubMed: 23982718]

1230. O CK, Chan JCN. Insights into optimal BMI from the GlasVEGAS study. *Nat Metab.* 2024; 6: 1435–1437. [PubMed: 39152222]

1231. Koch B, Schaper C, Ittermann T, Spielhagen T, Dorr M, Volzke H, Opitz CF, Ewert R, Glaser S. Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study. *Eur Respir J.* 2009; 33: 389–397. [PubMed: 18768575]

1232. Chen LK, Meng LC, Peng LN, Lee WJ, Zhang S, Nishita Y, Otsuka R, Yamada M, Pan WH, Kamaruzzaman SB, Woo J, et al. Mapping Normative Muscle Health Metrics Across the Aging

Continuum: A Multinational Study Pooling Data From Eight Cohorts in Japan, Malaysia and Taiwan. *J Cachexia Sarcopenia Muscle*. 2025; 16 e13731 doi: 10.1002/jcsm.13731 [PubMed: 39971708]

1233. Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, Franklin BA, Gulati M, Lavie CJ, Myers J, Patel MJ, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. *Circulation*. 2013; 127: 652–662. [PubMed: 23295916]

1234. Kaminsky LA, Myers J, Brubaker PH, Franklin BA, Bonikowske AR, German C, Arena R. 2023 update: The importance of cardiorespiratory fitness in the United States. *Prog Cardiovasc Dis*. 2024; 83: 3–9. [PubMed: 38360462]

1235. Western MJ, Malkowski OS. Associations of the Short Physical Performance Battery (SPPB) with Adverse Health Outcomes in Older Adults: A 14-Year Follow-Up from the English Longitudinal Study of Ageing (ELSA). *Int J Environ Res Public Health*. 2022; 19 doi: 10.3390/ijerph192316319 [PubMed: 36498395]

1236. Furrer R, van Schoor NM, de Haan A, Lips P, de Jongh RT. Gender-specific associations between physical functioning, bone quality, and fracture risk in older people. *Calcif Tissue Int*. 2014; 94: 522–530. [PubMed: 24458514]

1237. Gichu M, Harwood RH. Measurement of healthy ageing. *Age Ageing*. 2023; 52: iv3–iv5. DOI: 10.1093/ageing/afad118 [PubMed: 37902515]

1238. Tavassoli N, de Souto Barreto P, Berbon C, Mathieu C, de Kerimel J, Lafont C, Takeda C, Carrie I, Piau A, Jouffrey T, Andrieu S, et al. Implementation of the WHO integrated care for older people (ICOPE) programme in clinical practice: a prospective study. *Lancet Healthy Longev*. 2022; 3: e394–e404. [PubMed: 36098317]

1239. Beard JR, Jotheeswaran AT, Cesari M, Araujo de Carvalho I. The structure and predictive value of intrinsic capacity in a longitudinal study of ageing. *BMJ Open*. 2019; 9 e026119 doi: 10.1136/bmjopen-2018-026119 [PubMed: 31678933]

1240. Thiagarajan JA, Araujo de Carvalho I, Pena-Rosas JP, Chadha S, Mariotti SP, Dua T, Albanese E, Bruyere O, Cesari M, Dangour A, Dias A, et al. Redesigning care for older people to preserve physical and mental capacity: WHO guidelines on community-level interventions in integrated care. *PLoS Med*. 2019; 16 e1002948 doi: 10.1371/journal.pmed.1002948 [PubMed: 31626651]

1241. Flammer J, Konieczka K, Bruno RM, Virdis A, Flammer AJ, Taddei S. The eye and the heart. *Eur Heart J*. 2013; 34: 1270–1278. DOI: 10.1093/eurheartj/eht023 [PubMed: 23401492]

1242. Nusinovici S, Rim TH, Li H, Yu M, Deshmukh M, Quek TC, Lee G, Chong CCY, Peng Q, Xue CC, Zhu Z, et al. Application of a deep-learning marker for morbidity and mortality prediction derived from retinal photographs: a cohort development and validation study. *Lancet Healthy Longev*. 2024; 5 100593 doi: 10.1016/S2666-7568(24)00089-8 [PubMed: 39362226]

1243. Yusufu M, Friedman DS, Kang M, Padhye A, Shang X, Zhang L, Shi D, He M. Retinal vascular fingerprints predict incident stroke: findings from the UK Biobank cohort study. *Heart*. 2025. [PubMed: 39805634]

1244. Chaput JP, Biswas RK, Ahmadi M, Cistulli PA, Rajaratnam SMW, Bian W, St-Onge MP, Stamatakis E. Sleep regularity and major adverse cardiovascular events: a device-based prospective study in 72 269 UK adults. *J Epidemiol Community Health*. 2024; doi: 10.1136/jech-2024-222795 [PubMed: 39603689]

1245. Ulfa M, Setyonugroho W, Lestari T, Widiasih E, Nguyen Quoc A. Nutrition-Related Mobile Application for Daily Dietary Self-Monitoring. *J Nutr Metab*. 2022; 2022 2476367 doi: 10.1155/2022/2476367 [PubMed: 36082357]

1246. Niemela M, Maijala A, Nauha L, Jamsa T, Korpelainen R, Farrahi V. Associations of Wearable Ring Measured Sleep, Sedentary Time, and Physical Activity With Cardiometabolic Health: A Compositional Data Analysis Approach. *Scand J Med Sci Sports*. 2024; 34 e14710 [PubMed: 39164958]

1247. Bajunaid R, Niu C, Hambley C, Liu Z, Yamada Y, Aleman-Mateo H, Anderson LJ, Arab L, Baddou I, Bandini L, Bedu-Addo K, et al. Predictive equation derived from 6,497 doubly labelled water measurements enables the detection of erroneous self-reported energy intake. *Nat Food*. 2025; 6: 58–71. DOI: 10.1038/s43016-024-01089-5 [PubMed: 39806218]

1248. Isakadze N, Martin SS. How useful is the smartwatch ECG?. *Trends Cardiovasc Med.* 2020; 30: 442–448. [PubMed: 31706789]

1249. Keshet A, Shilo S, Godneva A, Talmor-Barkan Y, Aviv Y, Segal E, Rossman H. CGMap: Characterizing continuous glucose monitor data in thousands of non-diabetic individuals. *Cell Metab.* 2023; 35: 758–769. e753 [PubMed: 37080199]

1250. Park H, Metwally AA, Delfarah A, Wu Y, Perelman D, Rodgar M, Mayer C, Celli A, McLaughlin T, Mignot E, Snyder M. Lifestyle Profiling Using Wearables and Prediction of Glucose Metabolism in Individuals with Normoglycemia or Prediabetes. *medRxiv.* 2024.

1251. Aging Biomarker C, Huang N, Ge M, Liu X, Tian X, Yin P, Bao Z, Cao F, Shyh-Chang N, Dong B, Dai L, et al. A framework of biomarkers for skeletal muscle aging: a consensus statement by the Aging Biomarker Consortium. *Life Med.* 2024; 3 lnaf001 doi: 10.1093/lifemed/lnaf001 [PubMed: 40008206]

1252. Ortega FB, Cadenas-Sanchez C, Lee DC, Ruiz JR, Blair SN, Sui X. Fitness and Fatness as Health Markers through the Lifespan: An Overview of Current Knowledge. *Prog Prev Med (N Y).* 2018; 3 e0013 doi: 10.1097/ppm.0000000000000013 [PubMed: 32671316]

1253. Zhao W, Dai C, Wang Q, Zhang J, Lou X, Chen R, Shen G, Zhang Y. Sarcopenia risk in U.S. younger adults: the impact of physical activity intensity and occupational engagement-insights from a cross-sectional NHANES study. *BMC Public Health.* 2024; 24 3179 doi: 10.1186/s12889-024-20665-9 [PubMed: 39543540]

1254. Evans WJ, Guralnik J, Cawthon P, Appleby J, Landi F, Clarke L, Vellas B, Ferrucci L, Roubenoff R. Sarcopenia: no consensus, no diagnostic criteria, and no approved indication-How did we get here?. *Geroscience.* 2024; 46: 183–190. DOI: 10.1007/s11357-023-01016-9 [PubMed: 37996722]

1255. Chen LK. Community-powered actions building a healthier future for aging populations. *Arch Gerontol Geriatr.* 2025; 128 105652 [PubMed: 39384470]

1256. Diaz T, Banerjee A. Welcome to the supplement on measurement of healthy ageing. *Age and Ageing.* 2023; 52: iv1–iv2.

1257. Vazquez-Guajardo M, Rivas D, Duque G. Exercise as a Therapeutic Tool in Age-Related Frailty and Cardiovascular Disease: Challenges and Strategies. *Can J Cardiol.* 2024; 40: 1458–1467. [PubMed: 38215969]

1258. Hills AP, Jayasinghe S, Arena R, Byrne NM. Global status of cardiorespiratory fitness and physical activity - Are we improving or getting worse?. *Prog Cardiovasc Dis.* 2024; 83: 16–22. [PubMed: 38417767]

1259. Wang Z, Emmerich A, Pillon NJ, Moore T, Hemerich D, Cornelis MC, Mazzaferro E, Broos S, Ahluwalia TS, Bartz TM, Bentley AR, et al. Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention. *Nat Genet.* 2022; 54: 1332–1344. DOI: 10.1038/s41588-022-01165-1 [PubMed: 36071172]

1260. Ramirez FD, Chen Y, Di Santo P, Simard T, Motazedian P, Hibbert B. Association Between Self-Reported Potentially Modifiable Cardiac Risk Factors and Perceived Need to Improve Physical Health: A Population-Based Study. *J Am Heart Assoc.* 2017; 6 doi: 10.1161/JAHA.117.005491 [PubMed: 28468783]

1261. Garcia-Hermoso A, Lopez-Gil JF, Ramirez-Velez R, Alonso-Martinez AM, Izquierdo M, Ezzatvar Y. Adherence to aerobic and muscle-strengthening activities guidelines: a systematic review and meta-analysis of 3.3 million participants across 32 countries. *Br J Sports Med.* 2023; 57: 225–229. [PubMed: 36418149]

1262. Lehtonen E, Gagnon D, Eklund D, Kaseva K, Peltonen JE. Hierarchical framework to improve individualised exercise prescription in adults: a critical review. *BMJ Open Sport Exerc Med.* 2022; 8 e001339 doi: 10.1136/bmjssem-2022-001339 [PubMed: 35722045]

1263. Morgan PJ, Young MD, Smith JJ, Lubans DR. Targeted Health Behavior Interventions Promoting Physical Activity: A Conceptual Model. *Exerc Sport Sci Rev.* 2016; 44: 71–80. [PubMed: 26829248]

1264. Pratt M, Varela Ramirez, Salvo D, Kohl III HW, Ding D. Attacking the pandemic of physical inactivity: what is holding us back?. *Br J Sports Med.* 2020; 54: 760–762. [PubMed: 31704698]

1265. Collins KA, Huffman KM, Wolever RQ, Smith PJ, Siegler IC, Ross LM, Hauser ER, Jiang R, Jakicic JM, Costa PT, Kraus WE. Determinants of Dropout from and Variation in Adherence to an Exercise Intervention: The STRRIDE Randomized Trials. *Transl J Am Coll Sports Med.* 2022; 7 doi: 10.1249/tjx.0000000000000190 [PubMed: 35669034]

1266. Zhu S, Sinha D, Kirk M, Michalopoulou M, Hajizadeh A, Wren G, Doody P, Mackillop L, Smith R, Jebb SA, Astbury NM. Effectiveness of behavioural interventions with motivational interviewing on physical activity outcomes in adults: systematic review and meta-analysis. *BMJ.* 2024; 386 e078713 doi: 10.1136/bmj-2023-078713 [PubMed: 38986547]

1267. Ness RG, Patton RW. The effect of beliefs on maximum weight-lifting performance. *Cognitive Therapy and Research.* 1979; 3: 205–211.

1268. Feil K, Fritsch J, Rhodes RE. The intention-behaviour gap in physical activity: a systematic review and meta-analysis of the action control framework. *Br J Sports Med.* 2023; 57: 1265–1271. [PubMed: 37460164]

1269. Rhodes RE. Translating Physical Activity Intentions into Behavior: Reflective, Regulatory, and Reflexive Processes. *Exerc Sport Sci Rev.* 2024; 52: 13–22. [PubMed: 38126402]

1270. WHO. Global action plan on physical activity 2018–2030: more active people for a healthier world. World Health Organization; Geneva: 2018. <https://www.who.int/publications/item/9789241514187>

1271. Sherwood NE, Jeffery RW. The behavioral determinants of exercise: implications for physical activity interventions. *Annu Rev Nutr.* 2000; 20: 21–44. [PubMed: 10940325]

1272. Westerbeek H, Eime R. The Physical Activity and Sport Participation Framework-A Policy Model Toward Being Physically Active Across the Lifespan. *Front Sports Act Living.* 2021; 3 608593 doi: 10.3389/fspor.2021.608593 [PubMed: 34027402]

1273. Rutters F, den Braver NR, Lakerveld J, Mackenbach JD, van der Ploeg HP, Griffin S, Elders PJM, Beulens JWJ. Lifestyle interventions for cardiometabolic health. *Nat Med.* 2024; 30: 3455–3467. [PubMed: 39604492]

1274. Bista S, Debaché I, Chaix B. Physical activity and sedentary behaviour related to transport activity assessed with multiple body-worn accelerometers: the RECORD MultiSensor Study. *Public Health.* 2020; 189: 144–152. [PubMed: 33242758]

1275. Chakrabarti S, Shin EJ. Automobile dependence and physical inactivity: Insights from the California Household Travel Survey. *Journal of Transport & Health.* 2017; 6: 262–271.

1276. Sugiyama T, Chandrasekaran M, Homer AR, Sugiyama M, Dunstan DW, Owen N. Car use and cardiovascular disease risk: Systematic review and implications for transport research. *Journal of Transport & Health.* 2020; 19

1277. Mackay A, Mackay DF, Celis-Morales CA, Lyall DM, Gray SR, Sattar N, Gill JMR, Pell JP, Anderson JJ. The association between driving time and unhealthy lifestyles: a cross-sectional, general population study of 386 493 UK Biobank participants. *J Public Health (Oxf).* 2019; 41: 527–534. DOI: 10.1093/pubmed/fdy155 [PubMed: 30239914]

1278. Wang ML, Narcisse MR, McElfish PA. Higher walkability associated with increased physical activity and reduced obesity among United States adults. *Obesity (Silver Spring).* 2023; 31: 553–564. DOI: 10.1002/oby.23634 [PubMed: 36504362]

1279. Narcisse MR, Wang ML, Schootman M, DelNero P, Schwarz AG, McElfish PA. Physical activity among cancer survivors: do neighborhood walkability and metropolitan size play a role?. *J Cancer Surviv.* 2024. [PubMed: 38775900]

1280. Collado-Mateo D, Lavin-Perez AM, Penacoba C, Del Coso J, Leyton-Roman M, Luque-Casado A, Gasque P, Fernandez-Del-Olmo MA, Amado-Alonso D. Key Factors Associated with Adherence to Physical Exercise in Patients with Chronic Diseases and Older Adults: An Umbrella Review. *Int J Environ Res Public Health.* 2021; 18 doi: 10.3390/ijerph18042023 [PubMed: 33669679]

1281. Teixeira DS, Bastos V, Andrade AJ, Palmeira AL, Ekkekakis P. Individualized pleasure-oriented exercise sessions, exercise frequency, and affective outcomes: a pragmatic randomized controlled trial. *Int J Behav Nutr Phys Act.* 2024; 21: 85. doi: 10.1186/s12966-024-01636-0 [PubMed: 39103923]

1282. Lee AK, Muhamad RB, Tan VPS. Physically active primary care physicians consult more on physical activity and exercise for patients: A public teaching-hospital study. *Sports Med Health Sci.* 2024; 6: 82–88. DOI: 10.1016/j.smhs.2023.11.002 [PubMed: 38463668]

1283. Izquierdo M, Duque G, Morley JE. Physical activity guidelines for older people: knowledge gaps and future directions. *Lancet Healthy Longev.* 2021; 2: e380–e383. [PubMed: 36098146]

1284. Izquierdo M, Merchant RA, Morley JE, Anker SD, Aprahamian I, Arai H, Aubertin-Leheudre M, Bernabei R, Cadore EL, Cesari M, Chen LK, et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. *J Nutr Health Aging.* 2021; 25: 824–853. [PubMed: 34409961]

1285. Palumbo M, Modena R, Bortolan L, Skafidas S, Callovini A, Savoldelli A, Gilli F, Fornasiero A, Schena F, Pellegrini B, Zoppirolli C. Effects of a similar amount of regular non-structured or competitive physical activity across late adulthood: a cross-sectional study. *Front Sports Act Living.* 2024; 6 1416080 doi: 10.3389/fspor.2024.1416080 [PubMed: 38873229]

1286. Tiller NB, Stellingwerff T, Witard OC, Hawley JA, Burke LM, Betts JA. The Nontechnical Summary: A New Initiative to Enhance the Translation of Sports Science Research and Reduce the Spread of Misinformation. *Int J Sport Nutr Exerc Metab.* 2024; 34: 337–339. [PubMed: 39179215]

1287. Sadana R, Blas E, Budhwani S, Koller T, Paraje G. Healthy Ageing: Raising Awareness of Inequalities, Determinants, and What Could Be Done to Improve Health Equity. *Gerontologist.* 2016; 56 (Suppl 2) S178–193. [PubMed: 26994259]

1288. Ding D, Chastin S, Salvo D, Nau T, Gebel K, Sanchez-Lastra MA, Luo M, Crochemore-Silva I, Ekelund U, Bauman A. Realigning the physical activity research agenda for population health, equity, and wellbeing. *Lancet.* 2024; 404: 411–414. [PubMed: 39067460]

1289. Wackerhage H, Schoenfeld BJ. Personalized, Evidence-Informed Training Plans and Exercise Prescriptions for Performance, Fitness and Health. *Sports Med.* 2021; 51: 1805–1813. DOI: 10.1007/s40279-021-01495-w [PubMed: 34143410]

1290. Grindem H, Myklebust G. Be a Champion for Your Athlete's Health. *J Orthop Sports Phys Ther.* 2020; 50: 173–175. [PubMed: 31995430]

1291. Guess N. Big data and personalized nutrition: the key evidence gaps. *Nat Metab.* 2024; 6: 1420–1422. [PubMed: 38278944]

1292. Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W, Pratt M, Lancet Physical Activity Series 2 Executive C. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. *Lancet.* 2016; 388: 1311–1324. [PubMed: 27475266]

1293. Santos AC, Willumsen J, Meheus F, Ilbawi A, Bull FC. The cost of inaction on physical inactivity to public health-care systems: a population-attributable fraction analysis. *Lancet Glob Health.* 2023; 11: e32–e39. DOI: 10.1016/S2214-109X(22)00464-8 [PubMed: 36480931]

1294. Wang Y, Muller J, Myers J. Association between cardiorespiratory fitness and health care costs in hypertensive men. *Atherosclerosis.* 2021; 331: 1–5. [PubMed: 34252836]

1295. Myers J, de Souza ESCG, Doom R, Fonda H, Chan K, Kamil-Rosenberg S, Kokkinos P. Cardiorespiratory Fitness and Health Care Costs in Diabetes: The Veterans Exercise Testing Study. *Am J Med.* 2019; 132: 1084–1090. [PubMed: 31047866]

1296. Morera A, Calatayud J, Lopez-Bueno R, Nunez-Cortes R, Blafoss R, Venge Skovlund S, Andersen LL. Leisure-Time Physical Activity to Reduce Risk of Long-Term Sickness Absence Across Diverse Subgroups in the Working Population-A Prospective Cohort Study of 68,000 Participants. *J Phys Act Health.* 2025; 22: 85–91. [PubMed: 39536740]

1297. Scrafford CG, Bi X, Multani JK, Murphy MM, Schmier JK, Barraj LM. Health Economic Evaluation Modeling Shows Potential Health Care Cost Savings with Increased Conformance with Healthy Dietary Patterns among Adults in the United States. *J Acad Nutr Diet.* 2019; 119: 599–616. [PubMed: 30591404]

1298. Jackson T. The False Economy of Big Food - and the case for a new food economy The Food, Farming and Countryside Commission (FFCC). 2024. last accessed on Nov 22 <https://ffcc.co.uk/publications/the-false-economy-of-big-food>

1299. Gössling S, Choi A, Dekker K, Metzler D. The Social Cost of Automobility, Cycling and Walking in the European Union. *Ecological Economics*. 2019; 158: 65–74.

1300. Chaput JP, Carrier J, Bastien C, Gariepy G, Janssen I. Economic burden of insufficient sleep duration in Canadian adults. *Sleep Health*. 2022; 8: 298–302. [PubMed: 35400617]

1301. Chaput JP, Janssen I, Sampasa-Kanyinga H, Tomkinson GR, Lang JJ. Economic burden of low cardiorespiratory fitness in Canada. *Prev Med*. 2023; 168 107424 [PubMed: 36682702]

1302. Chaput JP, Janssen I, Sampasa-Kanyinga H, Tomkinson GR, Lang JJ. Economic burden of low muscle strength in Canadian adults. *Appl Physiol Nutr Metab*. 2023; 48: 634–638. [PubMed: 37148565]

1303. Burns ER, Stevens JA, Lee R. The direct costs of fatal and non-fatal falls among older adults - United States. *J Safety Res*. 2016; 58: 99–103. DOI: 10.1016/j.jsr.2016.05.001 [PubMed: 27620939]

1304. Lee J, Jukarainen S, Karvanen A, Dixon P, Davies NM, Smith GD, Natarajan P, Ganna A. Quantifying the causal impact of biological risk factors on healthcare costs. *Nat Commun*. 2023; 14 5672 doi: 10.1038/s41467-023-41394-4 [PubMed: 37704630]

1305. Elliehausen CJ, Anderson RM, Diffee GM, Rhoads TW, Lamming DW, Hornberger TA, Konopka AR. Geroprotector drugs and exercise: friends or foes on healthy longevity?. *BMC Biol*. 2023; 21: 287. doi: 10.1186/s12915-023-01779-9 [PubMed: 38066609]

1306. Furrer R, Handschin C. Biomarkers of aging: functional aspects still trump molecular parameters. *NPJ Aging*. 2025; 11: 15. doi: 10.1038/s41514-025-00207-2 [PubMed: 40032923]

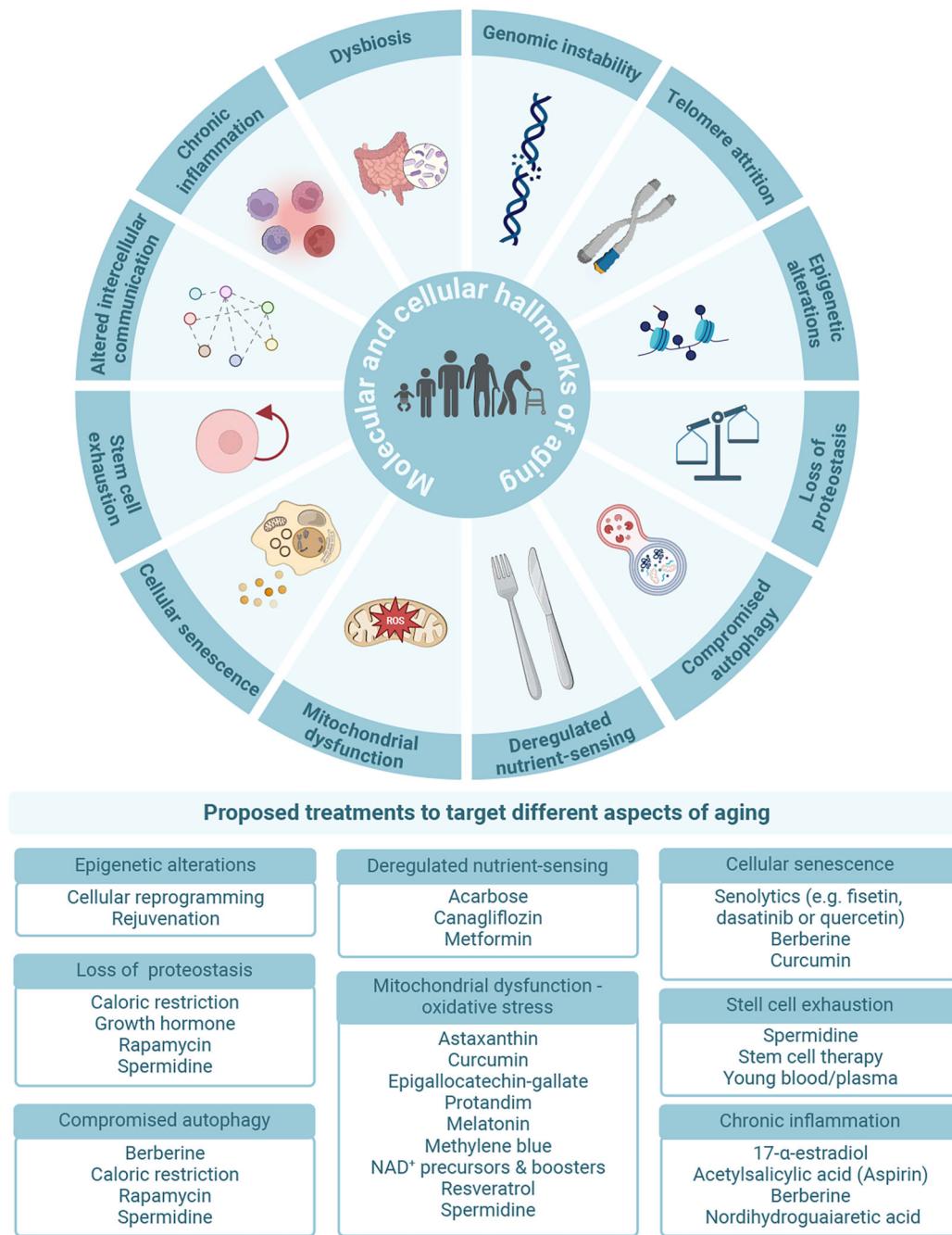
1307. Johnson BT, Acabchuk RL. What are the keys to a longer, happier life? Answers from five decades of health psychology research. *Soc Sci Med*. 2018; 196: 218–226. DOI: 10.1016/j.socscimed.2017.11.001 [PubMed: 29153315]

1308. Perri G, French C, Agostinis-Sobrinho C, Anand A, Antarianto RD, Arai Y, Baur JA, Cauli O, Clivaz-Duc M, Colloca G, Demetriades C, et al. An expert consensus statement on biomarkers of ageing for use in intervention studies. *J Gerontol A Biol Sci Med Sci*. 2024; doi: 10.1093/gerona/glae297 [PubMed: 39708300]

1309. Scott AJ, Ellison M, Sinclair DA. The economic value of targeting aging. *Nat Aging*. 2021; 1: 616–623. DOI: 10.1038/s43587-021-00080-0 [PubMed: 37117804]

1310. Gems D, Okholm S, Lemoine M. Inflated expectations: the strange craze for translational research on aging : Given existing confusion about the basic science of aging, why the high optimism in the private sector about the prospects of developing anti-aging treatments?. *EMBO Rep*. 2024; 25: 3748–3752. DOI: 10.1038/s44319-024-00226-2 [PubMed: 39152216]

1311. Nolan CM, Kon SSC, Patel S, Jones SE, Barker RE, Polkey MI, Maddocks M, Man WD. Gait speed and pedestrian crossings in COPD. *Thorax*. 2018; 73: 191–192. [PubMed: 28476882]


1312. Dommershuijsen LJ, Ragunathan J, Ruiter R, Groothof D, Mattace-Raso FUS, Ikram MA, Polinder-Bos HA. Gait speed reference values in community-dwelling older adults - Cross-sectional analysis from the Rotterdam Study. *Exp Gerontol*. 2022; 158 111646 [PubMed: 34861357]

Clinical Highlights

1. Aging is the strongest risk factor for many (chronic) diseases, frailty, morbidity and mortality.
2. At the moment, the molecular underpinnings of aging are still only poorly understood and accordingly, pharmacological interventions that directly target aging elusive.
3. The molecular biomarkers of aging exhibit a large variability, with very few attempts of validation in humans.
4. Physiological biomarkers of aging, centered on functional, anthropogenic and morphological aspects, are well-established in large human populations, with very high predictive value for disease risks, frailty, morbidity and mortality.
5. The physiological biomarkers however are somewhat underappreciated, even though they could be used in young and old, healthy and clinical populations right now.
6. Lifestyle, behavioral and environmental factors have a significant effect on human health and mortality, while many pharmacological and interventional approaches found in pre-clinical models still await human translation.
7. These factors with proven benefits should be encouraged and promoted on the individual and societal levels.

Box 1**Proposed framework and criteria of aging biomarkers. Adapted from ref. 507**

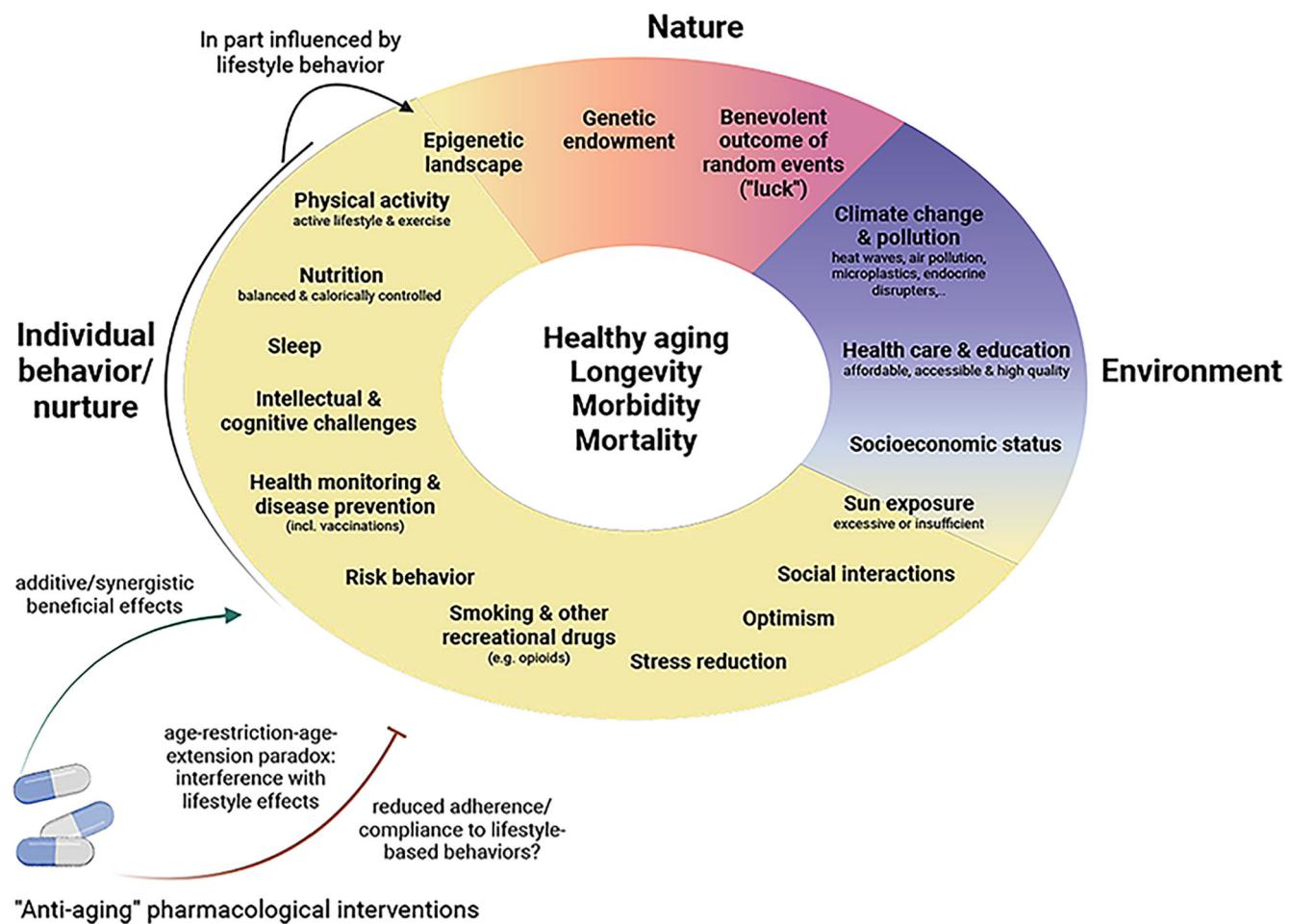
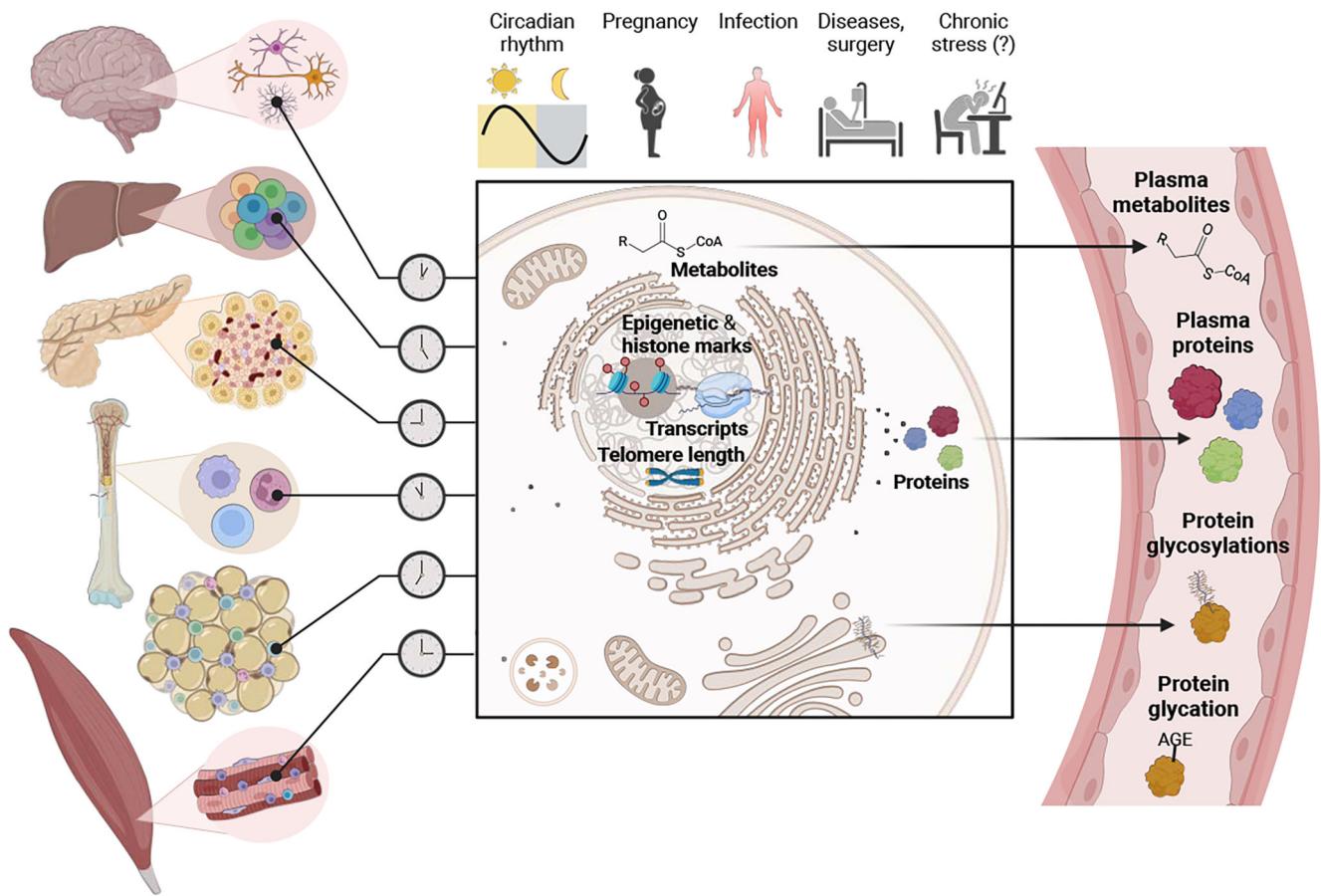
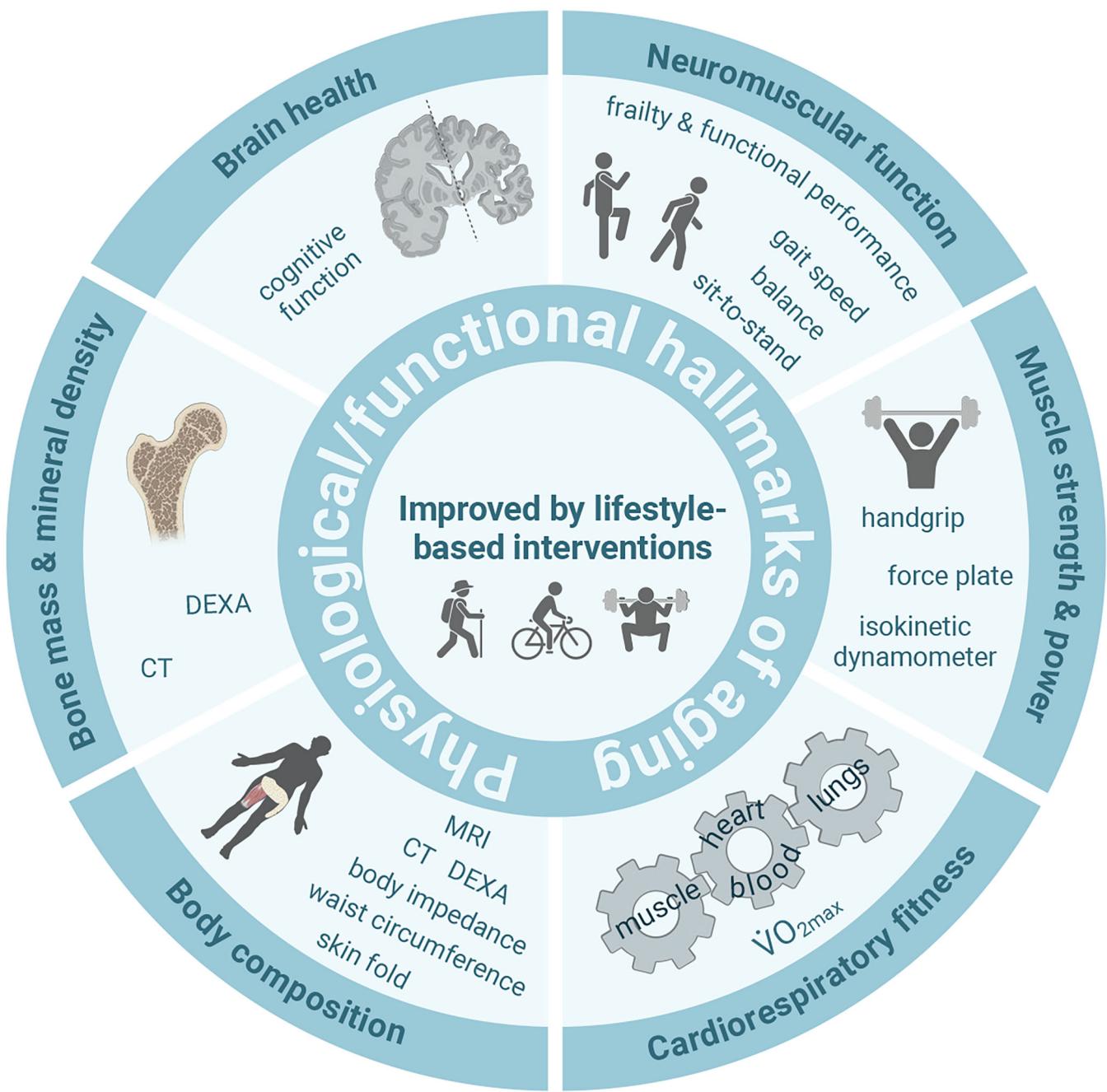

Classification	How can the biomarker be used? 1.)Predictive (e.g. for aging trajectories, identification of individuals that respond to interventions) 2.)Prognostic (e.g. trajectories and treatment of age-associated diseases) 3.)Response (e.g. biological reaction to aging or interventions) 4.)Surrogate endpoint (e.g. to substitute for direct measurement of aging)
Assessment	How can the biomarker be measured? 1.)Feasibility and validity of measurements (e.g. prerequisites for sample acquisition, processing and data interpretation, age-sensitivity, non-age-accelerating) 2.)Mechanistic underpinnings and biological plausibility (e.g. reflection of underlying mechanisms involved in the aging process) 3.)Generalizability (e.g. narrow vs. broad applicability from model organisms to humans, usage in different ethnicities, sexes, age groups and other demographics and populations) 4.)Response to aging and interventions (e.g. reflecting improvement or deterioration in the aging process and inversely, promotion of geroprotective effects) 5.)Costs (e.g. application in large-scale settings and life-long longitudinal assessments) 6.)Invasiveness and safety (e.g. minimally invasive, devoid of adverse effects, safe to test from the young to the oldest of the old)
Validation	Has the biomarker been validated in terms of measurement methods and clinical application? 1.)Analytical validation (e.g. quantifiable, accurate, reliable, repeatable and reproducible measurement, standardized procedures) 2.)Clinical validation (e.g. validity in different human cohorts, statistically relevant reference values for broad demographics and populations)

Figure 1. The molecular and cellular hallmarks of the aging process and potential anti-aging compounds.


A number of molecular cellular alterations have been proposed to be associated with the aging processes, including genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, compromised autophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis (see ref. 110). Various treatments have been suggested to target some of these processes (examples shown) and might thereby have the potential for anti-aging drug effects (see refs. 38, 110, 113–128). However, at the moment, no

evidence for efficacy (and safety) for the application of any of these pharmacological and interventional factors on the human aging process exists. Figure created with [BioRender.com](#).


Figure 2. Factors and interventions affecting healthy aging, health- and lifespan, morbidity and mortality.

Nature: The genetic endowment and the benevolent outcome of random events cannot be influenced. **Nurture:** Lifestyle-associated behaviors can, to a large extent, be influenced on an individual level, extending to the modulation of some epigenetic modifications. **Environment:** Other significant factors, e.g. socio-economic status, health care and education, are determined by the prevailing political and societal landscape. For all of these factors, solid epidemiological and/or observational data for a significant influence on morbidity and mortality in humans exist. Yet to be identified “anti-aging” drugs with validated efficacy in humans could add to or synergize with the effect of these factors. Inversely however, they could also interfere, both on a psychological level, e.g. intake of a pill replacing exercise as an easier “substitute”, or on a mechanistic level, e.g. as described for resveratrol, metformin or rapamycin. Thus, at the moment, efforts should center on improving the adoption and promotion of the proven factors shown here. Figure created with [BioRender.com](https://biorender.com).

Figure 3. Molecular biomarkers and aging clocks.

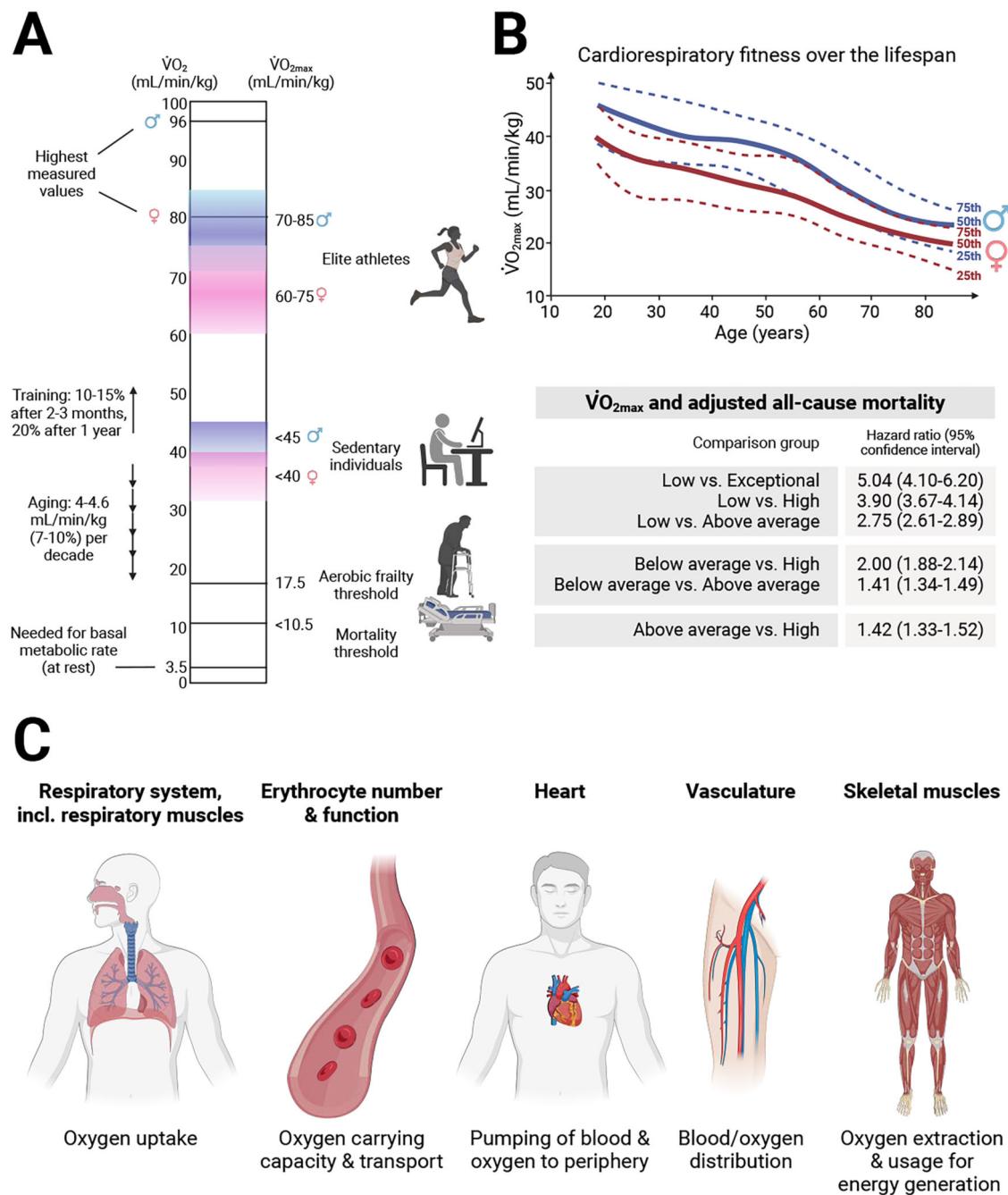

The age-dependency of several molecular events is leveraged to predict whether “biological age” deviates from chronological age. Processes that are monitored range from telomere length to epigenetic marks, most notably DNA methylation events. Specific fingerprints of transcripts, proteins, metabolites and protein glycosylations and glycation have likewise been proposed as biomarkers for aging. Most of these age-dependent molecular changes occur in all cells, tissues and organs of the body. However, significant differences exist between individual tissues/organs, cell types, or even between cells of the same type based on spatial organization within an organ. One way to avoid potential confounding effects of cell heterogeneity is to define plasma metabolite or plasma protein profiles that are associated with aging. Of note, some of these clocks are affected by circadian rhythms or external perturbations such as pregnancy, infection, diseases and potentially other factors such as chronic stress. Abbreviation: AGE, advanced glycation end product. Figure created with [BioRender.com](https://biorender.com).

Figure 4. Physiological/functional hallmarks of aging.

The loss in muscle mass, often associated with a change in fat mass and distribution, reduced cardiorespiratory function, impaired muscle strength/power and neuromuscular deficiencies associated with frailty are age-related processes that are observed universally, all of which are measured with the physiological biomarkers of aging. In addition, reduced brain health, in particular driven by neurodegeneration, and a loss in bone mass and mineral density occur. Most of these hallmarks of aging can be determined by the proposed physiological biomarkers. Of note, all of these hallmarks of aging are ameliorated by the lifestyle- and behavior-based interventions, most importantly exercise training.

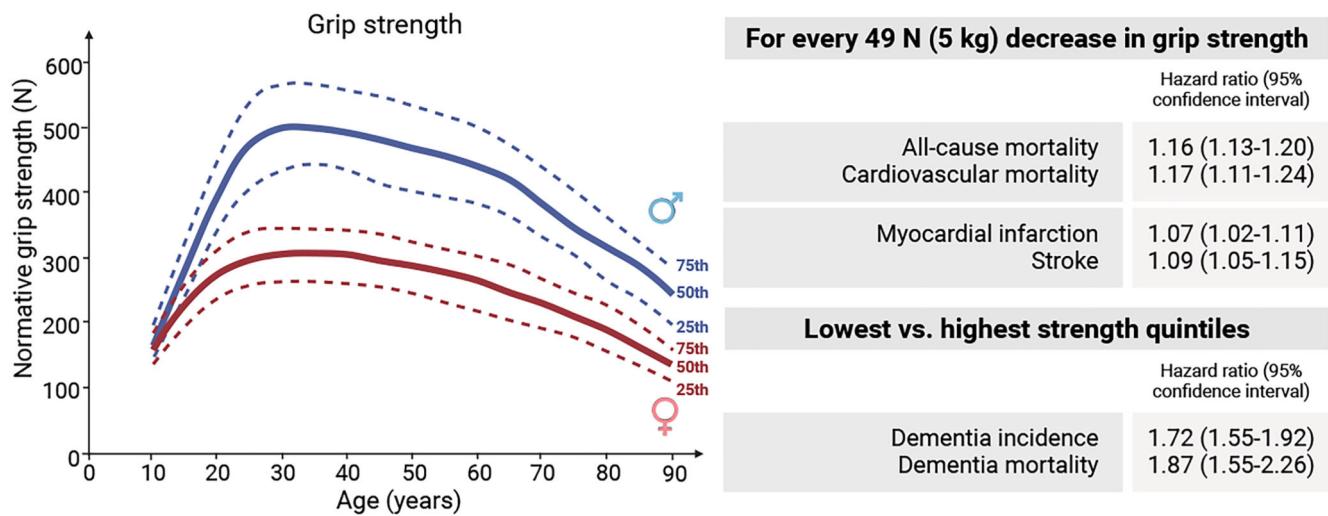
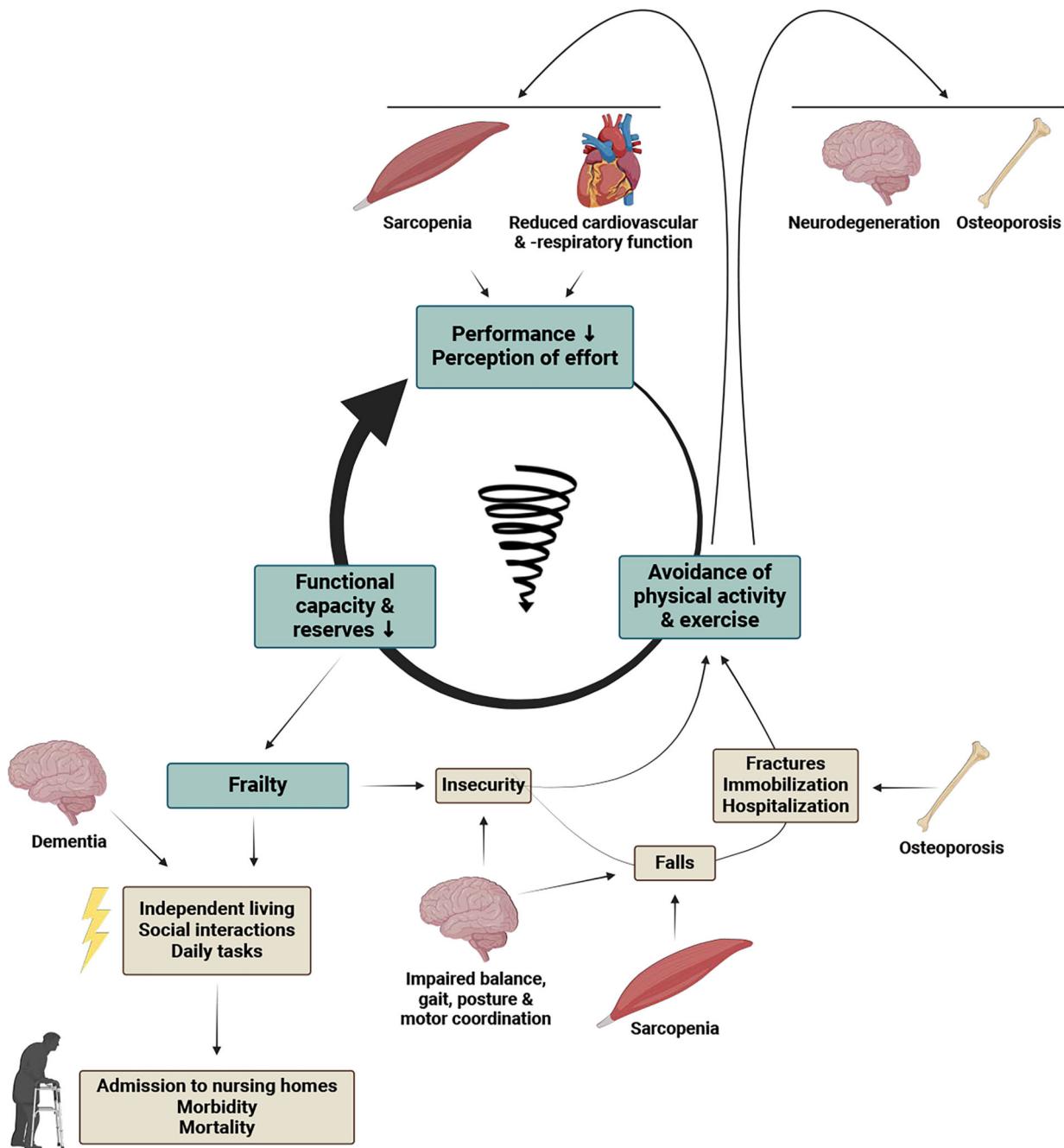

Abbreviation: CT, computed tomography; DEXA, dual energy X-ray absorptiometry; MRI, magnetic resonance imaging. Figure created with [BioRender.com](https://biorender.com).

Figure 5. $\dot{V}O_{2\text{max}}$ is a strong predictor of health, morbidity and mortality.


A, $\dot{V}O_{2\text{max}}$ represents a multisystem readout of cardiorespiratory fitness, which is highly pliable by exercise. The age-associated decrease of up to 10% per decade can meet an aerobic frailty threshold, leading to disability and loss-of-independence. $\dot{V}O_{2\text{max}}$ is substantially higher in elite athletes, with measures approx. 2-fold above those of the general population. **B**, Age-related $\dot{V}O_{2\text{max}}$ in a cross-sectional patient study of different ages and sexes (n=122'007; men: n=72'173; women: n=49'904), acquired over 24 years, tested by treadmill running. The 25th, 50th and 75th percentiles for each sex are indicated

by solid (50th) and dashed (25th and 75th) lines. Adjusted all-cause mortality hazard risk ratios between groups (pooled over all age groups and both sexes) are all significant ($p<0.001$). Groups: Low (<25th), below average (25th-49th), above average (50th-74th), high (75th-97.6th), exceptional (>97.7th). Values from ref. 600. **C**, Examples of organs, tissues and cell types that contribute to and determine $\dot{V}O_{2\max}$. Figure created with [BioRender.com](#).

Figure 6. Physiological biomarker grip strength.

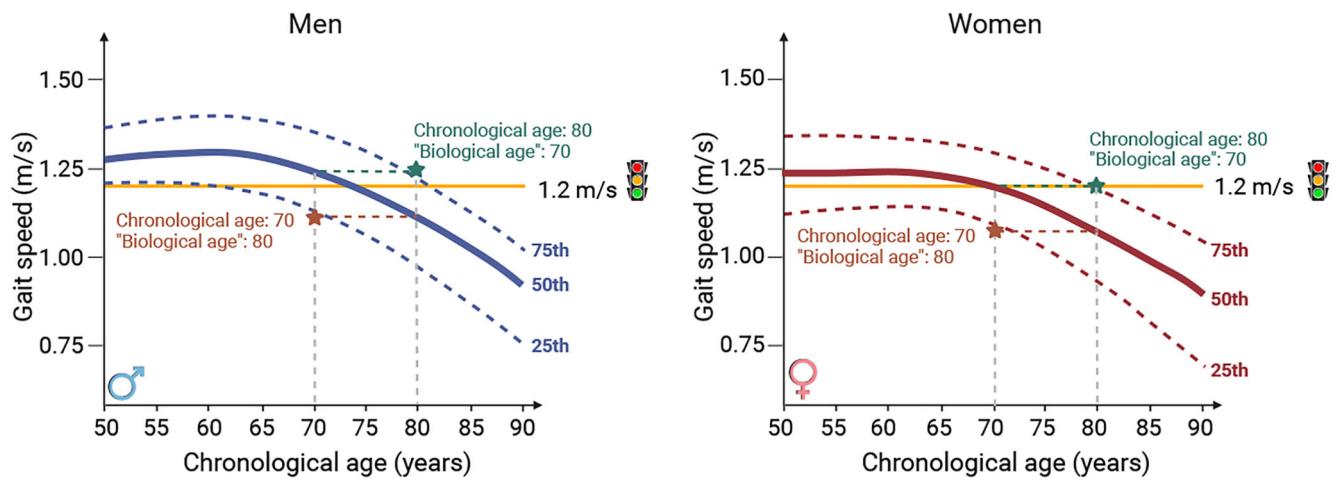
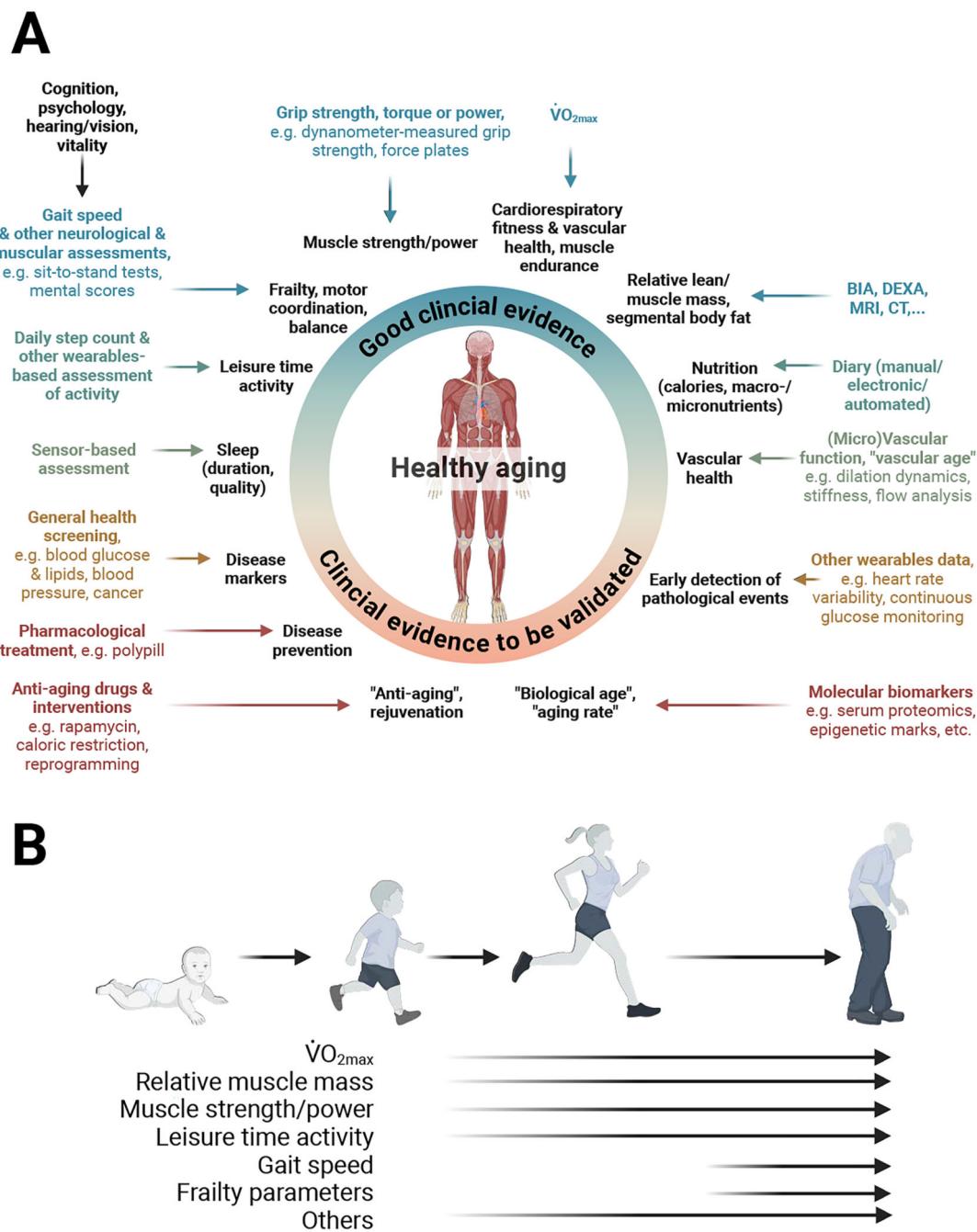

Age trajectories of grip strength in men and women. Grip strength data from ref. 785 (n=49'964 participants; men: n=23'277; women: n=26'687). Adjusted hazard risk ratios from refs. 792 and 789. Figure created with [BioRender.com](https://biorender.com).

Figure 7. Age-associated degeneration of skeletal muscle, neuronal tissue, bone and the cardiovascular system drive a vicious cycle leading to loss-of-independence, morbidity and mortality.


Sarcopenia (loss of muscle mass and function), together with reduced cardiovascular and – respiratory function (leading to decreased endurance and increased fatigability) reduce physical performance and increase the perception of effort for exercise- and daily task-related endeavors. As a consequence, such activities are being increasingly avoided, further depleting functional capacity and reserves. The lack of adequate levels of these lead to frailty, which, in turn exacerbates sarcopenia, cardiovascular dysfunction, neurodegeneration

and osteoporosis, thereby fueling a vicious cycle. Together with neurodegenerative events, e.g. linked to dementia, this constitute the major driver for the inability to perform daily tasks (e.g. carrying groceries, cleaning the apartment, walking up- and downstairs or across pedestrian crossings), enjoy social interactions, and independent living, thus leading to admission to nursing homes, increasing the risk for (co-)morbidity and elevating mortality risks. Neuromuscular deterioration, e.g. in balance, motor coordination and gait, promotes insecurity and, exacerbated by muscle weakness, also the risk for incident falls, which, in the worst case, lead to fractures (facilitated by reduced bone mass and mineral density), immobilization and hospitalization. All of these factors contribute to the avoidance of physical activity and exercise, thus further fueling this vicious cycle. Figure created with [BioRender.com](#).

Figure 8. Physiological aging biomarkers associate with chronological age, while also predicting “biological age”.

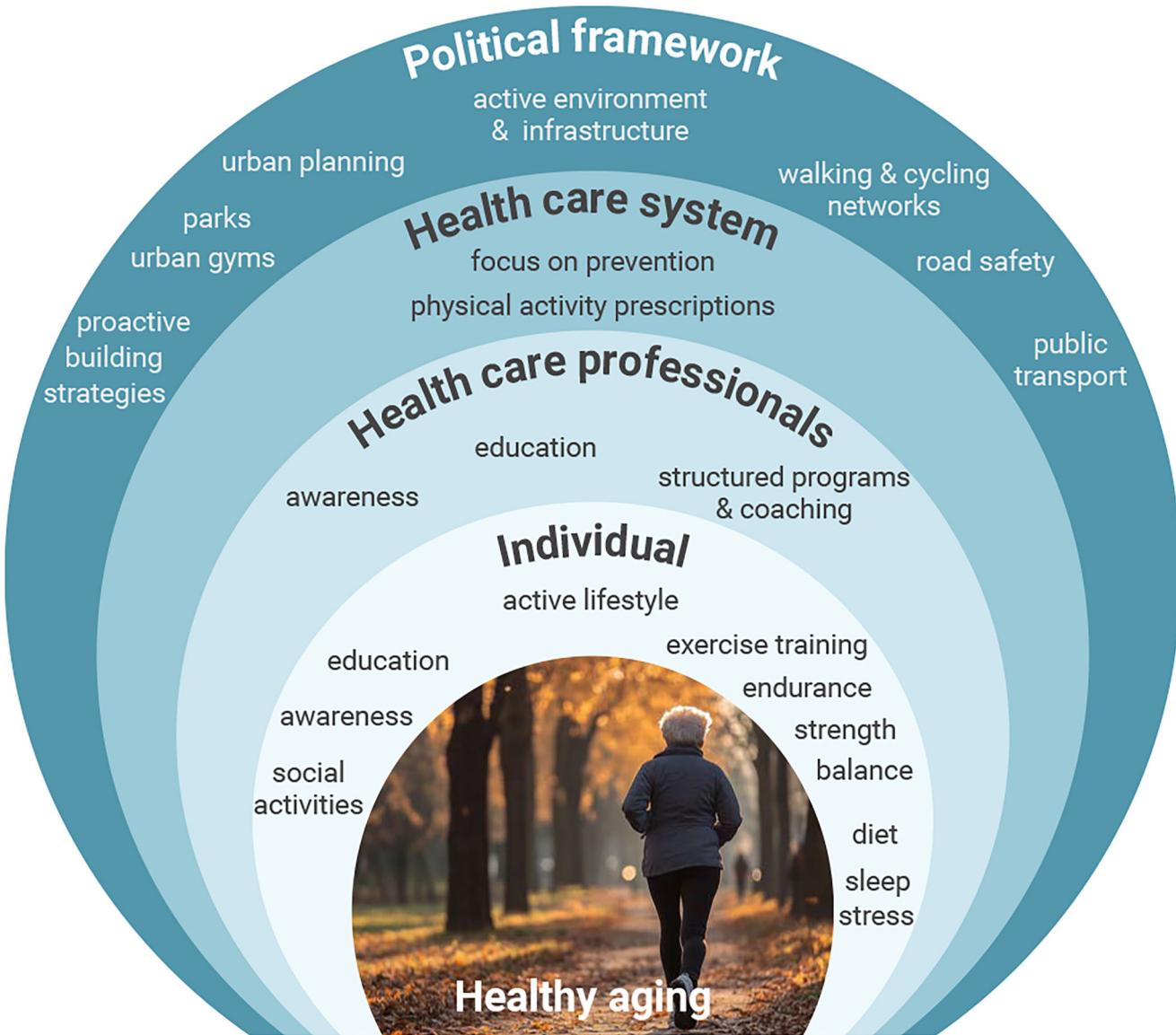
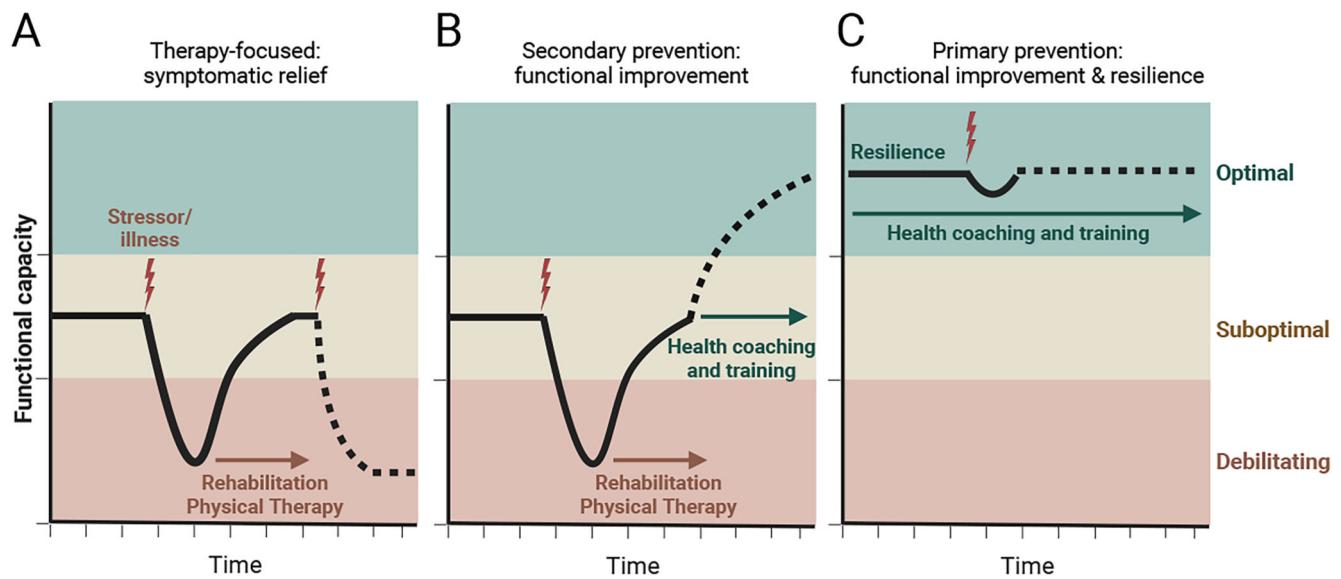

In this figure, the decline of gait speed with chronological age in men and women is shown from which a “biological age” can be inferred. In the examples, the green star represents an individual of chronological age 80, who however has a gait speed representing the mean of 70 years of age. In contrast, the slow gait speed of the 70-years old red star is equivalent to that of 80-years old individuals. In these examples, the 80-years old would still sequester above the threshold of 1.2 m/s gait speed needed to walk across many pedestrian crossings (indicated by the yellow line) (see ref. 1311), while the 70-years old individuals would fail to succeed in this task. The figure is based on data presented in ref. 1312 (men: n=2'087; women: n=2'569). Figure created with [BioRender.com](https://biorender.com).

Figure 9. Comprehensive assessment of physiological and other biomarkers of aging.


A, Gait speed, grip strength, leisure time activity, $\dot{V}O_{2\max}$, relative muscle mass and related parameters are clinically proven biomarkers of aging. A longitudinal assessment throughout lifetime could provide information on aging and health trajectories, efficacy of interventions and treatment, and detrimental outcome of pathological events. Data on sleep and nutrition, wearable- and/or app-based, could likewise be included. Moreover, specific assessment of vascular function (and “vascular age”), based on blood flow, stiffness and dilation dynamics, assessed in a non-invasive manner, for example in the retinal vasculature, helps to predict

vascular health. Such an individual “health/aging” pass, consisting of a combination of these markers, could further be combined with general health screening, pharmacological preventative interventions (e.g. a polypill) or wearables data, even though the benefits of these measures are currently questionable. In the future, molecular biomarkers of aging, as well as potential pharmacological and interventional means could be included in such a strategy, if valid clinical data on efficacy and safety in the human aging process can be shown. **B**, A personalized health pass covering various domains should be based on the proposed biomarkers and obtained in a longitudinal manner from young to old age. Thereby, favorable or unfavorable trajectories could be identified early on, and appropriate measures prescribed. Abbreviations: BIA, bioelectric impedance analysis; CT, computed tomography; DEXA, dual-energy X-ray absorptiometry; MRI, magnetic resonance imaging. Figure created with [BioRender.com](https://biorender.com).

Figure 10. A four-level approach to promote physical activity.

Physical activity, exercise training and calorically-controlled, balanced diet have proven benefits on the aging process, morbidity and mortality. These lifestyle-based behaviors should therefore be promoted on different levels, from a political framework that supports the corresponding infrastructural adaptations, to health care system investing in prevention, health care professionals monitoring and prescribing guided, structured programs, and eventually the individual who will have to initiate and maintain behavioral changes for long-lasting effects. Various examples of measures are shown. Figure created with [BioRender.com](#) and [Adobe Stock Photos](#).

Figure 11. Focus on prevention rather than treatment.

A, Impaired functional capacity is a major driving force for incident morbidity, accidents or wear and tear, potentially leading to dependence on medical intervention and hospitalization and the corresponding debilitation. The prevailing model of a reactive, therapy-focused system with high costs, and high relapse if rehabilitation is aimed at bringing back patients to the initial baseline of functional capacity, which, often remains in a suboptimal range, thus potentially setting up patients for relapses. **B**, Additional programs that boost functional capacity to an optimal level, e.g. with health coaching and guided, structured training programs, could help in a more pro-active manner in secondary prevention. Thereby, a more optimal state of functional capacity could be achieved, preventing or at least mitigating the risk for relapses. **C**, In the best case scenario, programs aimed at healthy individuals in primary prevention would improve functional capacity to an optimal range before the onset of an incidence, thereby conferring resilience to avoid or reduce pathological events and health care system dependence. Figure created with [BioRender.com](https://biorender.com).